Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 4, pp 1031–1042 | Cite as

Enhancement of Populus alba tolerance to Venturia tremulae upon inoculation with endophytes showing in vitro biocontrol potential

  • C. Martínez-Arias
  • D. Macaya-Sanz
  • J. Witzell
  • J. A. MartínEmail author
Article

Abstract

Several studies have provided evidence that endophytes of forest trees can provide the trees with protection against pests and pathogens, but more experimental evidence is still needed to better understand if endophytes could be utilized in biocontrol of forest diseases. Here, we tested the hypothesis that fungal endophytes of Populus alba L. contribute to tree tolerance to Venturia tremulae Aderh., causal agent of shoot dieback in trees within Populus section. Fungal endophytes were isolated from twigs of two healthy P. alba trees, and classified according to their morphology and ITS sequence. Pleosporales, Dothideales and Eurotiales were the main fungal orders represented. Twelve isolates were challenged by the pathogen in in vitro dual assays and 10 of them reduced the growth rate of the pathogen. A mixed cell suspension from these endophytes was applied as a preventive treatment to P. alba seedlings growing in the greenhouse with the exception of positive control plants. Fifteen days later, plants were treated with a V. tremulae spore suspension. An additional control group of Populus x canescens (Aiton) Sm. seedlings were also inoculated with V. tremulae. Although the overall incidence of symptoms was low, both the incidence and severity of damages were lower in P. alba plants pretreated with endophytes than in controls (43.18 and 12.16% of incidence and severity reduction, respectively). Incidence of symptoms was higher in P. x canescens than in P. alba seedlings, evidencing the higher tolerance of P. alba to Venturia shoot blight. The results suggest that P. alba endophyte community may reinforce the host’s tolerance to the pathogen.

Keywords

Endophytic fungi Biological control Populus (Salicaceae) Venturia tremulae (Pleosporales, Venturiaceae) 

Notes

Acknowledgments

We are very grateful to Dr. Hugo Mas i Gisbert (Laboratori de Sanitat Forestal, CIEF, Generalitat Valenciana) for providing plant material.

Funding

This study was funded by Ministerio de Ciencia e Innovación, Spain (CTQ2011–28503-C02–02).

Compliance with ethical standards

Conflict of interest

Author Clara Martínez-Arias declares that she has no conflict of interest.

Author David Macaya-Sanz declares that he has no conflict of interest.

Author Johanna Witzell declares that she has no conflict of interest.

Author Juan A. Martín declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Albrectsen, B. R., Bjorken, L., Varad, A., Hagner, A., Wedin, M., Karlsson, J., & Jansson, S. (2010). Endophytic fungi in European aspen (Populus tremula) leaves-diversity, detection, and a suggested correlation with herbivory resistance. Fungal Diversity, 41(1), 17–28.CrossRefGoogle Scholar
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.CrossRefGoogle Scholar
  3. Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88(3), 541–549.CrossRefGoogle Scholar
  4. Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N., & Herre, E. A. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15649–15654.CrossRefGoogle Scholar
  5. Bailey, B. A., Bae, H., Strem, M. D., Roberts, D. P., Thomas, S. E., Crozier, J., Samuels, G. J., Choi, I. Y., & Holmes, K. A. (2006). Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta, 224(6), 1449–1464.CrossRefGoogle Scholar
  6. Bálint, M., Tiffin, P., Hallstroem, B., O'Hara, R. B., Olson, M. S., Fankhauser, J. D., et al. (2013). Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One, 8(1), e53987.CrossRefGoogle Scholar
  7. Blenis, P. V. (2007). Impact of simulated aspen shoot blight on trembling aspen. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 37, 719–725.Google Scholar
  8. Blenis, P. V., & Chow, P. S. (2001). Inoculation of Populus tremuloides with Pollaccia americana. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 23(2), 149–157.CrossRefGoogle Scholar
  9. Blumenstein, K., Albrectsen, B. R., Martin, J. A., Hultberg, M., Sieber, T. N., Helander, M., & Witzell, J. (2015). Nutritional niche overlap potentiates the use of endophytes in biocontrol of a tree disease. Biocontrol, 60(5), 655–667.CrossRefGoogle Scholar
  10. Busby, P. E., Zimmerman, N., Weston, D. J., Jawdy, S. S., Houbraken, J., & Newcombe, G. (2013). Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen Drepanopeziza populi. Ecosphere, 4(10), art125.CrossRefGoogle Scholar
  11. Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380.CrossRefGoogle Scholar
  12. Chamberlain, K., & Crawford, D. L. (1999). In vitro and in vivo antagonism of pathogenic turf grass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. Journal of Industrial Microbiology & Biotechnology, 23(1), 641–646.CrossRefGoogle Scholar
  13. Cordier, T., Robin, C., Capdevielle, X., Desprez-Loustau, M. L., & Vacher, C. (2012). Spatial variability of phyllosphere fungal assemblages: Genetic distance predominates over geographic distance in a European beech stand (Fagus syluatica). Fungal Ecology, 5(5), 509–520.CrossRefGoogle Scholar
  14. Crous, P. W., Schubert, K., Braun, U., de Hoog, G. S., Hocking, A. D., Shin, H. D., & Groenewald, J. Z. (2007). Opportunistic human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Studies in Mycology, 58, 185–217.CrossRefGoogle Scholar
  15. Faeth, S. H. (2002). Are endophytic fungi defensive plant mutualists? Oikos, 98(1), 25–36.CrossRefGoogle Scholar
  16. Ganley, R. J., Sniezko, R. A., & Newcombe, G. (2008). Endophyte-mediated resistance against white pine blister rust in Pinus monticola. Forest Ecology and Management, 255(7), 2751–2760.CrossRefGoogle Scholar
  17. Gao, F., Dai, C., & Liu, X. (2010). Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 4(13), 1346–1351.Google Scholar
  18. Grady, K. C., Kolb, T. E., Ikeda, D. H., & Witham, T. G. (2015). A bridge too far: Cold and pathogen constraints to assisted migration of riparian forests. Restoration Ecology, 23(6), 811–820.CrossRefGoogle Scholar
  19. Guyon, J. (2004). Management guide for Venturia leaf and shoot blight. Forest Health Protection and State Forestry Organizations. Available via https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5191787.pdf. Accessed 15 Dec 2016.
  20. Hamilton, C. E., & Bauerle, T. L. (2012). A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Diversity, 54(1), 39–49.CrossRefGoogle Scholar
  21. Hanada, R. E., Pomella, A. W. V., Costa, H. S., Bezerra, J. L., Loguercio, L. L., & Pereira, J. O. (2010). Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuacu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biology, 114(11–12), 901–910.CrossRefGoogle Scholar
  22. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.CrossRefGoogle Scholar
  23. Helander, M., Ahlholm, J., Sieber, T. N., Hinneri, S., & Saikkonen, K. (2007). Fragmented environment affects birch leaf endophytes. New Phytologist, 175(3), 547–553.CrossRefGoogle Scholar
  24. Holeski, L. M., Vogelzang, A., Stanosz, G., & Lindroth, R. L. (2009). Incidence of Venturia shoot blight in aspen (Populus tremuloides Michx.) varies with tree chemistry and genotype. Biochemical Systematics and Ecology, 37(3), 139–145.CrossRefGoogle Scholar
  25. Kusari, P., Kusari, S., Spiteller, M., & Kayser, O. (2013). Endophytic fungi harbored in Cannabis sativa L.: Diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Diversity, 60(1), 137–151.CrossRefGoogle Scholar
  26. Lledó, S., Rodrigo, S., Poblaciones, M. J., & Santamaría, O. (2015). Biomass yield, mineral content, and nutritive value of Poa pratensis as affected by non-clavicipitaceous fungal endophytes. Mycological Progress, 14(9), 67.CrossRefGoogle Scholar
  27. Martín, J. A., Witzell, J., Blumenstein, K., Rozpedowska, E., Helander, M., Sieber, T. N., & Gil, L. (2013). Resistance to Dutch elm disease reduces presence of xylem endophytic fungi in elms (Ulmus spp.). PLoS One, 8(2), 13.Google Scholar
  28. Martín, J. A., Macaya-Sanz, D., Witzell, J., Blumenstein, K., & Gil, L. (2015). Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. European Journal of Plant Pathology, 142(1), 185–196.CrossRefGoogle Scholar
  29. Martín-Garcia, J., Espiga, E., Pando, V., & Diez, J. J. (2011). Factors influencing endophytic communities in poplar plantations. Silva Fennica, 45(2), 169–180.CrossRefGoogle Scholar
  30. Martín-Garcia, J., Muller, M. M., & Diez, J. J. (2012). ITS-based comparison of endophytic mycota in twigs of native Populus nigra and cultivated P. x euramericana stands in northern Spain. Annals of Forest Science, 69(1), 49–57.CrossRefGoogle Scholar
  31. McKinnon, A. C., Saari, S., Moran-Diez, M. E., Meyling, N. V., Raad, M., & Glare, T. R. (2017). Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. Biocontrol, 62(1), 1–17.CrossRefGoogle Scholar
  32. Mejía, L. C., Rojas, E. I., Maynard, Z., Van Bael, S., Arnold, A. E., Hebbar, P., et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46(1), 4–14.CrossRefGoogle Scholar
  33. Miles, L. A., Lopera, C. A., Gonzalez, S., de Garcia, M. C. C., Franco, A. E., & Restrepo, S. (2012). Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. Biocontrol, 57(5), 697–710.CrossRefGoogle Scholar
  34. Morelet, M. (1985). The genus Venturia on Populus species of section Leuce: 1. Taxonomy. Cryptogamie Mycologie, 6(2), 101–117.Google Scholar
  35. Murphy, B. R., Doohan, F. M., & Hodkinson, T. R. (2015). Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. Biocontrol, 60(2), 281–292.CrossRefGoogle Scholar
  36. Nakajima, M., & Akutsu, K. (2014). Virulence factors of Botrytis cinerea. Journal of General Plant Pathology, 80(1), 15–23.CrossRefGoogle Scholar
  37. Raghavendra, A. K. H., & Newcombe, G. (2013). The contribution of foliar endophytes to quantitative resistance to Melampsora rust. New Phytologist, 197(3), 909–918.CrossRefGoogle Scholar
  38. Richardson, D. M., Holmes, P. M., Esler, K. J., Galatowitsch, S. M., Stromberg, J. C., Kirkman, S. P., Pyšek, P., & Hobbs, R. J. (2007). Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 13(1), 126–139.CrossRefGoogle Scholar
  39. Roberts, A. L., & Crute, I. R. (1994). Improved procedures for the in vivo and in vitro production of conidial inoculum of Venturia species of pome fruit. Annals of Applied Biology, 125(3), 607–613.CrossRefGoogle Scholar
  40. Rodriguez, R. J., & Redman, R. S. (1997). Fungal life-styles and ecosystem dynamics: Biological aspects of plant pathogens, plant endophytes and saprophytes. Advances in Botanical Research Incorporating Advances in Plant Pathology, 24(24), 169–193.CrossRefGoogle Scholar
  41. Rodriguez, R. J., White Jr, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: Diversity and functional roles. New Phytologist, 182(2), 314–330.CrossRefGoogle Scholar
  42. Santamaria, O., & Diez, J. J. (2005). Fungi in leaves, twigs and stem bark of Populus tremula from northern Spain. Forest Pathology, 35(2), 95–104.CrossRefGoogle Scholar
  43. Schelfer, R. J., Voeten, J. G. W. F., & Guries, R. P. (2008). Biological control of Dutch elm disease. Plant Disease, 92(2), 192–200.CrossRefGoogle Scholar
  44. Schubert, K., Ritschel, A., & Braun, U. (2003). A monograph of Fusicladium (Hyphomycetes). Schlechtendalia, 9, 1–132.Google Scholar
  45. Shapiro, S. S., & Wilk, M. B. (1965). Analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611.CrossRefGoogle Scholar
  46. Sieber, T. (2007). Endophytic fungi in forest trees: Are they mutualists? Fungal Biology Reviews, 21(2–3), 75–89.CrossRefGoogle Scholar
  47. Sinclair, W.A. & Lyon, H.H. (2005). Shoot blights and twig diebacks. In: Diseases of Trees and Shrubs (pp. 90-91). 2nd edition. Ithaca: Cornell University Press.Google Scholar
  48. Spiering, M. J., Greer, D. H., & Schmid, J. (2006). Effects of the fungal endophyte Neotyphodium lolii on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in planta endophyte concentration. Annals of Botany, 98(2), 379–387.CrossRefGoogle Scholar
  49. Sumarah, M. W., Adams, G. W., Berghout, J., Slack, G. J., Wilson, A. M., & Miller, J. D. (2008). Spread and persistence of a rugulosin-producing endophyte in Picea glauca seedlings. Mycological Research, 112, 731–736.CrossRefGoogle Scholar
  50. Tejesvi, M. V., Picart, P., Kajula, M., Hautajarvi, H., Ruddock, L., Kristensen, H. H., et al. (2016). Identification of antibacterial peptides from endophytic microbiome. Applied Microbiology and Biotechnology, 100(21), 9283–9293.CrossRefGoogle Scholar
  51. Unterseher, M. (2011). Diversity of fungal endophytes in temperate forest trees. In M. A. Pirttilä & C. A. Frank (Eds.), Endophytes of Forest trees: Biology and applications (pp. 31–46). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  52. White, T., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). New York: Academic Press.Google Scholar
  53. Wilson, D. (1995). Endophytes - the evolution of a term and clarification of its use and definition. Oikos, 73(2), 274–276.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • C. Martínez-Arias
    • 1
    • 2
  • D. Macaya-Sanz
    • 2
    • 3
  • J. Witzell
    • 4
  • J. A. Martín
    • 2
    Email author
  1. 1.Escuela Técnica Superior de Ingeniería Agronómica y del Medio NaturalUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio NaturalUniversidad Politécnica de MadridMadridSpain
  3. 3.Department of BiologyWest Virginia UniversityMorgantownUSA
  4. 4.Southern Swedish Forest Research CenterSwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations