Functional groups of plant pathogens in agroecosystems: a review
Abstract
The concept of functional groups (set of species having similar physiological, ecological or life-history traits) has been largely used for plants, microorganisms, nematodes or insects in agroecosystems. However, this concept has been rarely applied to describe assemblages of plant pathogens. Yet, classification systems in plant pathology resemble this functional approach, as they address different disease processes or life history traits. In this review, we discuss advantages and drawbacks of current classification systems in relation to their application to the ecological management of crop diseases. Then, we propose to reorganize one of the classical plant-pathogen systems in a dichotomous key of functional groups obtained by combining two life-history traits: dispersal and survival strategies. The six functional groups proposed here are soil inhabitants; soil survivors; debris-seed-borne; air-borne; seed-borne, and vector-borne pathogens. We applied these groups to characterize pathogens of two major crops, wheat and tomato, grown in temperate climate regions. Our contribution intends to provide a comprehensive conceptual framework for the design of crop disease management strategies based on ecological principles, as well as to facilitate the interpretation of the occurrence of epidemics in response to the agricultural practices applied in real-world agroecosystems.
Keywords
Agroecology Crop diseases Cropping systems design Ecological disease managementNotes
Acknowledgements
This article is part of the Doctoral Thesis of D. Vega, developed at the Doctoral Program in Agroecology, University of Antioquia (Medellin, Colombia), which is held in association with the Sociedad Científica Latinoamericana de Agroecología (SOCLA). S. L. Poggio is member of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), the National Scientific and Technical Research Council of Argentina.
Fundings
This article has been supported by grants from UBACyT (20020130100501BA, 2014–2017).
Compliance with ethical standards
Conflict of interest
Damián Vega declares that he has no conflict of interest. Marcela E. Gally declares that she has no conflict of interest. Ana María Romero declares that she has no conflict of interest. Santiago L. Poggio declares that he has no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
References
- Abdala Roberts, L., Mooney, K. A., Quijano-Medina, T., Campos Navarrete, M. J., González Moreno, A., & Parra Tabla, V. (2015). Comparison of tree genotypic diversity and species diversity effects on different guilds of insect herbivores. Oikos, 124(11), 1527–1535.Google Scholar
- Agrios, G. N. (1969). Plant pathology. New York: Academic Press.Google Scholar
- Agrios, G. N. (2005). Plant Pathology. Fifth edition (p. 922). Elsevier academic press.Google Scholar
- Alfano, J. R., & Collmer, A. (2004). Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annual Review of Phytopathology, 42, 385–414.Google Scholar
- Altieri, M. A. (1987). Agroecology: The scientific basis of alternative agriculture. Westview Press.Google Scholar
- Bannon, F. J., & Cooke, B. M. (1998). Studies on dispersal of Septoria tritici pycnidiospores in wheat–clover intercrops. Plant Pathology, 47(1), 49–56.Google Scholar
- Berkelmans, R., Ferris, H., Tenuta, M., and van Bruggen, A.H.C. (2003). Effects of long-term crop management on higher trophic levels of nematodes than plant parasitic nematodes disappear after 1 year of uniform management. Applied Soil Ecology. 23: 223–235.Google Scholar
- Bockus, W. W. (1983). Effects of fall infection by Gaeumannomyces graminis var. tritici and triadimenol seed treatment on severity of take-all in winter wheat. Phytopathology, 73(4), 540–543.Google Scholar
- Bockus, W.W., Bowden, R.L., Hunger, R.M., Morrill, W.L., Murray, T.D. & Smiley, R.W. (ed) (2010) Compendium of wheat diseases and pests, Third Edition.Google Scholar
- De Boer, S.H. (1982) Survival of phytopathogenic bacteria in soil. Chapter 12. In: Mount, M.S., Lacy, G.H. (ed) Phytopathogenic prokaryotes, Vol.1. pp 285–302.Google Scholar
- Boudreau, M. A. (2013). Diseases in intercropping systems. Annual Review of Phytopathology, 51, 499–519.Google Scholar
- Brown, J. (1997). Survival and dispersal of plant parasites: general concepts. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogens and plant diseases (pp. 195–231). Armidale: APPS.Google Scholar
- Cardina, J., Webster, T. M., Herms, C. P., & Regnier, E. E. (1999). Development of weed IPM: Levels of integration for weed management. Journal of Crop Production, 2(1), 239–267.Google Scholar
- Chaboussou, F. (1980). Plantes malades des pesticides: bases nouvelles d'une prevention contre maladies et parasites. Debard, 304 pp.Google Scholar
- Clark, D. P., Dunlap, P., Madigan, M., & Martinko, J. (2009). Brock biology of microorganisms.Google Scholar
- Gaumann, E. (1946). Types of defensive reactions in plants. Phytopathology, 36(8), 624–633.Google Scholar
- Gilligan, C. A. (2002). An epidemiological framework for disease management. Advances in Botanical Research, 38, 1–64.Google Scholar
- Gómez-Rodrıguez, O., Zavaleta-Mejıa, E., Gonzalez-Hernandez, V. A., Livera-Munoz, M., & Cárdenas-Soriano, E. (2003). Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Research, 83(1), 27–34.Google Scholar
- Grose, M. J., Parker, C. A., & Sivasithamparam, K. (1984). Growth of Gaeumannomyces graminis var. tritici in soil: Effects of temperature and water potential. Soil Biology and Biochemistry, 16(3), 211–216.Google Scholar
- Gubbins, S., Gilligan, C. A., & Kleczkowski, A. (2000). Population dynamics of plant–parasite interactions: Thresholds for invasion. Theoretical Population Biology, 57, 219–233.Google Scholar
- Hiddink, G.A., Termorshuizen, A.J. & van Bruggen, A.H.C. (2009). Mixed cropping and suppression of soilborne diseases, a review. In: E. Lichtfouse (ed.), Genetic engineering, Biofertilisation, soil quality and organic farming, Sust. Agric. Rev. 4: 119–146.Google Scholar
- Irwin, M. E., Ruesink, W. G., Isard, S. A., & Kampmeier, G. E. (2000). Mitigating epidemics caused by non-persistently transmitted aphid-borne viruses: The role of the pliant environment. Virus Research, 71(1), 185–211.Google Scholar
- Jones, J.B., Zitter, T.A., Momol, T.M. & Miller, S.A. (ed) (2014) Compendium of Tomato Diseases and Pests, second edition. ISBN 978–0–89054-424-2. pp 176.Google Scholar
- Keesing, F., Holt, R. D., & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9, 485–498.Google Scholar
- Kendall, D. A., Chinn, N. E., Smith, B. D., Tidboald, C., Winstone, L., & Western, N. M. (1991). Effects of straw disposal and tillage on spread of barley yellow dwarf virus in winter barley. Annals of Applied Biology, 119(2), 359–364.Google Scholar
- Knops, J. M. H., Tilman, D., Haddad, N. M., Naeem, S., Mitchell, C. E., Haarstad, J., Ritchie, M. E., Howe, K. M., Reich, P. B., Siemann, E., & Groth, J. (1999). Effects of plant species richness on invasión dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 2, 286–293.Google Scholar
- Lavorel, S., & Garnier, É. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. Functional Ecology, 16(5), 545–556.Google Scholar
- Leoni, C., Rossing, W. A. H., & van Bruggen, A. H. C. (2015). Crop rotation. Chapter 4.2 in: Finckh, M., van Bruggen, a.H.C. and Tamm, L. (eds.) Plant Diseases and their Management in Organic Agriculture. APS press, St (pp. 127–140). Minnesota: Paul.Google Scholar
- Letourneau, D., & van Bruggen, A. H. C. (2006). Crop Protection. Ch 4. In P. Kristiansen, A. Taji, & J. Reganold (Eds.), Organic Agriculture: A Global Perspective (pp. 93–121). CSIRO.Google Scholar
- Lewis, D. H. (1972). Concepts in fungal nutrition and the origin of biotrophy. Biological Reviews, 48(2), 261–277.Google Scholar
- Lockwood, J. L. (1988). Evolution of concepts associated with soilborne plant pathogens. Annual Review of Phytopathology, 26(1), 93–121.Google Scholar
- Luttrell, E. S. (1974). Parasitism of fungi on vascular plants. Mycologia, 66(1), 1–15.Google Scholar
- Martin, A. R., & Isaac, M. E. (2018). Functional traits in agroecology: Advancing description and prediction in agroecosystems. Journal of Applied Ecology, 55(1), 5–11.Google Scholar
- McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40(1), 349–379.Google Scholar
- McNew, G. L. (1960). The nature, origin, and evolution of parasitism. VI. The effects of environment on different classes of parasitism. B. the effects of mineral nutrition. Plant Pathology, 2, 48–52.Google Scholar
- Médiène, S., Morison, M. V., Sarthou, J. P., Tourdonnet, S., Gosme, M., Bertrand, M., Estrade, J. R., Aubertot, J. N., Rusch, A., Motisi, N., Pelosi, C., & Doré, T. (2011). Agroecosystem management and biotic interactions: A review. Agronomy for Sustainable Development, 31, 491–514.Google Scholar
- Mitchel, C. A., Tilman, D., & Groth, J. V. (2002). Effects of grass-land species diversity, abundance, and composition on foliar fungal diseases. Ecology, 83, 1713–1726.Google Scholar
- Moonen, A. C., & Bàrberi, P. (2008). Functional biodiversity: An agroecosystem approach. Agriculture, Ecosystems & Environment., 127(1–2), 7–21.Google Scholar
- Moule, G. Chapter 9 (1988). In: Halley, R. J., Soffe, R. J. (ed). Primrose McConnell’s The Agricultural Notebook. 18 th edition. Butterworths & co. publishers ltd. pp 269–287.Google Scholar
- Mundt, C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology, 40(1), 381–410.Google Scholar
- Nicholls C.I. & Altieri, A.M. (2008). Suelos saludables, plantas saludables: la evidencia agroecológica. LEISA. Revista de Agroecología, 24(2), 6–8.Google Scholar
- Noble, M., De Temple, J., & Neergaard, P. (1958). An annotated list of seed-borne diseases.Google Scholar
- Oliver, R. P., & Ipcho, S. V. S. (2004). Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Molecular Plant Pathology, 5(4), 347–352.Google Scholar
- Perfect, S. E., & Green, J. R. (2001). Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Molecular Plant Pathology, 2(2), 101–108.Google Scholar
- Perfecto, I., Vandermeer, J., & Wright, A. (2009). Nature’s matrix: linking agriculture, conservation and food sovereignty (pp. 272). London: Routledge.Google Scholar
- Phatak, H. C. (1974). Seed-borne plant viruses-identification and diagnosis in seed health testing. Seed Science and Technology, 2(3).Google Scholar
- Poggio, S. L., Chaneton, E. J., & Ghersa, C. M. (2013). The arable plant diversity of intensively managed farmland: Effects of field position and crop type at local and landscape scales. Agriculture, Ecosystems & Environment, 166, 55–64.Google Scholar
- Power, A. G., & Mitchel, C. E. (2004). Pathogen spillover in disease epidemics. The American Naturalist, 164, S69–S89.Google Scholar
- Ratnadass, A., Fernandes, P., Avelino, J., y Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development, 32(1), 273–303.Google Scholar
- Reeleder, R. D. (2003). Fungal plant pathogens and soil biodiversity. Canadian Journal of Soil Science, 83, 331–336.Google Scholar
- Rekah, Y., Shtienberg, D., & Katan, J. (2001). Population Dynamics of Fusarium Oxysporum f. Sp. Radicis-lycopersici in Relation to the Onset of Fusarium Crown and Root Rot of Tomato. European Journal of Plant Pathology, 107, 367.Google Scholar
- Schroth, M. N., Weinhold, A. R., McCain, A. H., Hildebrand, D. C., & Ross, N. (1971). Biology and control of agrobacterium tumefaciens. University of Calif.Google Scholar
- Sharma, O. P., & Bambawale, O. M. (2008). Integrated management of key diseases of cotton and rice. In A. Ciancio & K. G. Mukerji (Eds.), Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria (pp. 271–302). Springer Netherlands.Google Scholar
- Shennan, C. (2008). Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society of London. B: Biological Sciences, 363(1492), 717–739.Google Scholar
- Sutton, J. C., & Vyn, T. J. (1990). Crop sequences and tillage practices in relation to diseases of winter wheat in Ontario. Canadian Journal of Plant Pathology, 12, 358–368.Google Scholar
- Termorshuizen, A. J., & Jeger, M. J. (2009). Strategies of soilborne plant pathogenic fungi in relation to disease suppression. Fungal Ecology, 1, 108–114.Google Scholar
- Thaler, J. S., Owen, B., & Higgins, V. J. (2004). The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiology, 135, 530–538.Google Scholar
- Tresh, J. M. (1982). Cropping practices and virus spread. Annual Review of Phytopathology, 20, 193–218.Google Scholar
- van Bruggen, A. H. C. (1995). Plant disease severity in high-input compared to reduced input and organic farming systems. Plant Disease., 79(10), 976–984.Google Scholar
- van Bruggen, A. H. C., & Finckh, M. (2016). Plant diseases and management approaches in organic farming systems. Annual Review of Phytopathology, 54, 25–54.Google Scholar
- van Bruggen, A. H. C., & Semenov, A. M. (2015). Soil health and soilborne diseases in organic agriculture. Chapter 3.2. In M. Finckh, A. H. C. van Bruggen, & L. Tamm (Eds.), Plant Diseases and their Management in Organic Agriculture (pp. 67–89). St. Paul, Minnesota: APS press.Google Scholar
- van Bruggen, A. H., Gamliel, A., & Finckh, M. R. (2016). Plant disease management in organic farming systems. Pest Management Science, 72(1), 30–44.Google Scholar
- Vatovec, C., Jordan, N., & Huerd, S. (2005). Responsiveness of certain agronomic weed species to arbuscular mycorrhizal fungi. Renewable Agriculture and Food Systems, 20(3), 181–189.Google Scholar
- Vega, D., & Romero, A. M. (2016). Survival of Clavibacter michiganensis subsp. michiganensis in tomato debris under greenhouse conditions. Plant Pathology, 65, 545–550.Google Scholar
- Vizvary, M. A., & Warren, H. L. (1982). Survival of Colletotrichum graminicola in soil. Phytopathology, 72(5), 522–525.Google Scholar
- Waggoner, P. E., Green, J. S. A., & Smith, F. B. (1983). The aerial dispersal of the pathogens of plant disease [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 302(1111), 451–462.Google Scholar
- Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40(1), 309–348.Google Scholar
- West, J. S., Townsend, J. A., Stevens, M., & Fitt, B. D. L. (2012). Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. European Journal of Plant Pathology, 133, 315–331.Google Scholar
- Wilhelm, S. (1951). Is verticillium albo-atrum a soil invader or a soil inhabitant. Phytopathology, 41(10), 944–945.Google Scholar
- Wood, S. A., Karp, D. S., DeClerck, F., Kremen, C., Naeem, S., & Palm, C. A. (2015). Functional traits in agriculture: Agrobiodiversity and ecosystem services. Trends in Ecology & Evolution, 30(9), 531–539.Google Scholar
- Zanin, G., Otto, S., Riello, L., & Borin, M. (1997). Ecological interpretation of weed flora dynamics under different tillage systems. Agriculture, Ecosystems & Environment, 66(3), 177–188.Google Scholar
- Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Leung, H., Mew, T. W., Teng, P. S., Wang, Z., & Mundt, C. C. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722.Google Scholar