Advertisement

European Journal of Plant Pathology

, Volume 150, Issue 1, pp 213–222 | Cite as

Isolation and characterization of Zhihengliuella aestuarii B18 suppressing clubroot on Brassica juncea var. tumida Tsen

  • Yuanli Luo
  • Daiwen DongEmail author
  • Zhiqin Gou
  • Xuyi Wang
  • Huan Jiang
  • Yufang Yan
  • Chaojun Wu
  • Changyong ZhouEmail author
Article

Abstract

Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in the Chongqing Municipality, People’s Republic of China. To find antagonistic bacteria for P. brassicae, 124 bacteria were obtained from the rhizosphere soil of B. juncea var. tumida grown in Fuling, Chongqing. Isolates were preliminarily chosen by evaluating the inhibition rate of the P. brassicae resting spore germination. The biocontrol effects of three antagonistic bacteria against clubroot on B. juncea var. tumida were evaluated in a greenhouse experiment. B18 showed the highest control efficiency, at 63.4% in the greenhouse test. In a field trial, B18 was also effective in controlling clubroot, but only at a 49.7% efficiency rate. According to 16S rDNA sequence analysis, strain B18 had a 100% sequence similarity with type strain Zhihengliuella aestuarii DY66T (EU939716). Based on morphological, cultural, physiological and biochemical characteristics, the DNA G + C content, polar lipids, fatty acids, cell wall analysis, as well as DNA–DNA hybridization, strain B18 was identified as Z. aestuarii B18. Thus, the isolate B18 might have a potential biocontrol application for clubroot. We report for the first time that Z. aestuarii B18 can control clubroot.

Keywords

Antagonistic bacterial Biocontrol Brassica juncea Var. Tumida Tsen Clubroot Plasmodiophora brassicae Zhihengliuella aestuarii 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Chongqing Science and Technology Commission (grant number: cstc 2013jcyjA80038) and the Special Fund for Post-Doctoral Research Project of Chongqing (grant number: Xm2015046)

Authors’ contributions

CYZ and YLL conceived and designed the study. YLL, DWD, ZQG, HJ, XYW, YFY and CJW collected samples and performed the experiment. YLL carried out the data analysis. YLL and CYZ contributed to the writing of the manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no potential conflicts of interest.

Informed consent

All authors read and approved the final manuscript.

References

  1. Arie, T., Kobayashi, Y., Okada, G., Kono, Y., & Yamaguchi, I. (1998). Control of soilborne clubroot disease of cruciferous plants by epoxydon from Phoma Glomerata. Plant Pathology, 47, 743–748.CrossRefGoogle Scholar
  2. Baik, K. S., Lim, C. H., Park, S. C., Choe, H. N., Kim, H. J., Kim, D., Lee, K. H., & Seong, C. N. (2011). Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology, 61(7), 1671–1676.CrossRefGoogle Scholar
  3. Cheah LH, Page BBC (1997) Trichoderma spp. For potential biocontrol of clubroot of vegetable brassicas. Proc 50th N Z Plant Protection Conf 150–153.Google Scholar
  4. Cordovez, V., Carrion, V. J., Etalo, D. W., Mumm, R., Zhu, H., van Wezel, G. P., & Raaijmakers, J. M. (2015). Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 6, 1081.CrossRefGoogle Scholar
  5. De Ley, J. (1970). Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology, 101, 738–754.PubMedPubMedCentralGoogle Scholar
  6. De Ley, J., Cattoir, H., & Reynaerts, A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. European Journal of Biochemistry, 12, 133–142.CrossRefGoogle Scholar
  7. Dixon, G. R. (2009). Plasmodiophora brassicae In its environment. Plant Growth Regulation, 28, 212–228.CrossRefGoogle Scholar
  8. Donald, C., & Porter, I. (2009). Integrated control of clubroot. Plant Growth Regulation, 28, 289.CrossRefGoogle Scholar
  9. El-Tarabily, K. A., & Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology & Biochemistry, 38, 1505–1520.CrossRefGoogle Scholar
  10. Faffian, R., & Strelkov, S. E. (2009). Detection and measurement of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 28, 282–288.CrossRefGoogle Scholar
  11. Guo, S. Y., Mao, Z. C., Wu, Y. X., Hao, K., He, P. F., & He, Y. Q. (2013). Genome sequencing of Bacillus Subtilis strain XF-1 with high efficiency in the suppression of Plasmodiophora brassicae. Genome Announcements, 1(2), 1–2.Google Scholar
  12. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10.CrossRefGoogle Scholar
  13. Jaschke, D., Dugassa-Gobena, D., Karlovsky, P., Vidal, S., & Ludwig-Muller, J. (2010). Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathology, 59, 100–111.CrossRefGoogle Scholar
  14. Khaled, A. E.-T., & Krishnapillai, S. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology & Biochemistry, 38, 1505–1520.CrossRefGoogle Scholar
  15. Kuginuki, Y., Yoshikawa, H., & Hirai, M. (1999). Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur J Plant Pathol, 105, 327.CrossRefGoogle Scholar
  16. Lee, S. O., Choi, G. J., Choi, Y. H., Jang, K. S., Park, D. J., Kim, C. J., & Kim, J. C. (2008). Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. Journal of Microbiology and Biotechnology, 18(11), 1741–1746.PubMedGoogle Scholar
  17. Ludwig-Muller, J., & Schuller, A. (2008). What can we learn from clubroots: Alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. European Journal of Plant Pathology, 121, 291–302.CrossRefGoogle Scholar
  18. Marmur, J., & Doty, P. (1962). Determination Of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol, 5, 109–118.CrossRefGoogle Scholar
  19. Mesbah, M., Premachandran, U., & Whitman, W. B. (1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. International Journal of Systematic Bacteriology, 39, 159–167.CrossRefGoogle Scholar
  20. Michelsen, C. F., Watrous, J., Glaring, M. A., Kersten, R., Koyama, N., Dorrestein, P. C., & Stougaard, P. (2015). Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio, 6, e00079–e00015. doi: 10.1128/mBio.00079-15.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  22. Naiki, T., Dixon, G. R., & Ikegami, H. (1987). Quantitative estimation of spore germination of Plasmodiophora brassicae. Transactions of the British Mycological Society, 89, 569–609.CrossRefGoogle Scholar
  23. Narisawa, K., Shimura, M., Usuki, F., Fukuhara, S., & Hashiba, T. (2005). Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Disease, 89, 285–290.CrossRefGoogle Scholar
  24. Rashid, A., Ahmed, H. U., Xiao, Q., Hwang, S. F., & Strelkov, S. E. (2013). Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs. Crop Protection, 48, 16–23.CrossRefGoogle Scholar
  25. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. Newark, DE: Microbial ID.Google Scholar
  26. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  27. Wang, J., Huang, Y., Lin, S., Liu, F., Song, Q., Peng, Y. L., & Zhao, L. (2012). A strain of Streptomyces griseoruber isolated from rhizospheric soil of Chinese cabbage as antagonist to Plasmodiophora brassicae. Annales de Microbiologie, 62, 247–253.CrossRefGoogle Scholar
  28. Xiao, C., & Guo, X. (2002). Biological Charateristic of Plasmodiophora brassicae. Mycosystema, 21(4), 597–603.Google Scholar
  29. Zhou, L., Li, M., Yang, J., Wei, L., & Ji, G. (2014). Draft genome sequence of antagonistic agent Lysobacter antibioticus 13-6. Genome Announcements, 2(5), e00566–e00514.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Yuanli Luo
    • 1
    • 2
  • Daiwen Dong
    • 2
    Email author
  • Zhiqin Gou
    • 2
  • Xuyi Wang
    • 2
  • Huan Jiang
    • 2
  • Yufang Yan
    • 2
  • Chaojun Wu
    • 2
  • Changyong Zhou
    • 1
    Email author
  1. 1.Citrus Research Institute of Chinese Academy of Agricultural ScienceSouthwest UniversityChongqingPeople’s Republic of China
  2. 2.Southeast Chongqing Academy of Agricultural SciencesChongqingPeople’s Republic of China

Personalised recommendations