European Journal of Plant Pathology

, Volume 150, Issue 1, pp 105–113 | Cite as

Development and characterization of EST-derived SSR markers in the cereal cyst nematode Heterodera avenae

  • X. Wang
  • J. Ma
  • H. Liu
  • R. Liu
  • H. LiEmail author


The cereal cyst nematode Heterodera avenae is a pathogen of cereal crops and causes high yield losses worldwide. In this study, a collection of 37,348 expressed sequence tags (ESTs) of H. avenae was mined for EST-based simple sequence repeat (SSR) markers, which resulted in the identification of 5604 SSRs. A total of 210 pairs of SSR primers were further developed and used for validation of the amplification rate and assessment of the polymorphism. Eight SSR markers were finally identified and analyzed using 96 individual cysts of H. avenae sampled from three provinces in China. These loci were found to be moderately polymorphic with 3–8 alleles per locus. The observed and expected heterozygosity across the three populations ranged from 0.000 to 0.594 and from 0.000 to 0.731, respectively. The polymorphism information content (PIC) was medium and ranged from 0.080 to 0.562, with a mean of 0.409. The FST ranged from 0.1034 to 0.1550, indicating moderate genetic differentiation among the three H. avenae populations. These EST-SSR markers can be used to study population genetic diversity and the dispersal route of H. avenae in China.


Microsatellite markers Phytoparasitic nematode Polymorphism analysis Population genetics 



This work was supported by the Natural Science Foundation of China (Grant No. 31471751) and the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201503114).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Adam, M. A. M., Phillips, M. S., & Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.) Plant Pathology, 56, 190–197.CrossRefGoogle Scholar
  2. Aleksic, M. A., & Geburek, T. (2014). Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conservation Genetics, 15, 87–107.CrossRefGoogle Scholar
  3. Alenda, C., Montarry, J., & Grenier, E. (2014). Human influence on the dispersal and genetic structure of French Globodera tabacum populations. Infection, Genetics and Evolution, 27, 309–317.CrossRefGoogle Scholar
  4. Amiri, S., Subbotin, S. A., & Moens, M. (2002). Identification of the beet cyst nematode Heterodera schachtii by PCR. European Journal of Plant Pathology, 108, 497–506.CrossRefGoogle Scholar
  5. Anderson, T. J., Haubold, B., Williams, J. T., Estrada-Franco, J. G., Richardson, L., Mollinedo, R., Bockarie, M., Mokili, J., Mharakurwa, S., French, N., Whitworth, J., Velez, I. D., Brockman, A. H., Nosten, F., Ferreira, M. U., & Day, K. P. (2000). Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Molecular Biology and Evolution, 17, 1467–1482.CrossRefGoogle Scholar
  6. Boucher, A. C., Mimee, B., Montarry, J., Bardou-Valette, S., Bélair, G., Moffett, P., & Grenier, E. (2013). Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada. Molecular Phylogenetics and Evolution, 69, 75–82.CrossRefGoogle Scholar
  7. Chen, P. S., Wang, M. Z., & Peng, D. L. (1991). Preliminary report of identification on cereal cyst nematode of wheat in China. Scientia Agricultura Sinica, 24, 89.Google Scholar
  8. Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014.PubMedPubMedCentralGoogle Scholar
  9. Criscione, C. D., Anderson, J. D., Raby, K., Sudimack, D., Subedi, J., Rai, D. R., Upadhayay, R. P., Jha, B., Williams-Blangero, S., & Anderson, T. J. (2007). Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility. Journal of Parasitology, 93, 704–708.Google Scholar
  10. Dieringer, D., & Schlötterer, C. (2003). Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3, 167–169.Google Scholar
  11. Eoche-Bosy, D., Gauthier, J., Juhel, A. S., Esquibet, M., Fournet, S., Grenier, E., & Montarry, J. (2016). Experimentally evolved populations of the potato cyst nematode Globodera pallida allow the targeting of genomic footprints of selection due to host adaptation. Plant Pathology. doi: 10.1111/ppa.12646.CrossRefGoogle Scholar
  12. Gilabert, A., & Wasmuth, J. D. (2013). Unravelling parasitic nematode natural history using population genetics. Trends in Parasitology, 29, 438–448.CrossRefGoogle Scholar
  13. Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485–486.CrossRefGoogle Scholar
  14. Grillo, V., Jackson, F., & Gilleard, J. S. (2006). Characterisation of Teladorsagia circumcincta microsatellites and their development as population genetic markers. Molecular and Biochemical Parasitology, 148, 181–189.CrossRefGoogle Scholar
  15. Haber, M., Schüngel, M., Putz, A., Müller, S., Hasert, B., & Schulenburg, H. (2005). Evolutionary history of Caenorhabditis elegans inferred from microsatellites: evidence for spatial and temporal genetic differentiation and the occurrence of outbreeding. Molecular Biology and Evolution, 22, 160–173.Google Scholar
  16. Huang, X., & Madan, A. (1999). CAP3: a DIVA sequence assembly program. Genome Research, 9, 868–877.Google Scholar
  17. Johnson, P. C., Webster, L. M., Adam, A., Buckland, R., Dawson, D. A., & Keller, L. F. (2006). Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat. Molecular and Biochemical Parasitology, 148, 210–218.CrossRefGoogle Scholar
  18. Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.CrossRefGoogle Scholar
  19. Kalinowski, S. T., & Taper, M. L. (2006). Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conservation Genetics, 7, 991–995.CrossRefGoogle Scholar
  20. Karunaweera, N. D., Ferreira, M. U., Hartl, D. L., & Wirth, D. F. (2007). Fourteen polymorphic microsatellite DNA markers for the human malaria parasite Plasmodium vivax. Molecular Ecology Notes, 7, 172–175.CrossRefGoogle Scholar
  21. Kim, J., Kim, T., Lee, Y. C., Chun, J. Y., Kern, E. M. A., Jung, J., & Park, J. K. (2016). Characterization of 15 microsatellite loci and genetic analysis of Heterodera schachtii (Nematoda: Heteroderidae) in South Korea. Biochemical Systematics and Ecology, 64, 97–104.CrossRefGoogle Scholar
  22. Koenning, S. R., & Sipes, B. S. (1998). Biology. In S. B. Sharma (Ed.), The Cyst Nematodes (pp. 156–190). Dordrecht: Kluwer Academic Publishers.Google Scholar
  23. Luikart, G., England, P. R., Tallmon, D. A., Jordan, S., & Taberlet, P. (2003). The power and promise of population genomics, from genotyping to genome typing. Nature Reviews Genetics, 4, 981–994.CrossRefGoogle Scholar
  24. Mallez, S., Castagnone, C., Espada, M., Vieira, P., Eisenback, J. D., Mota, M., Guillemaud, T., & Castagnone-Sereno, P. (2013). First insights into the genetic diversity of the pinewood nematode in its native area using new polymorphic microsatellite loci. PloS One, 8, e59165.CrossRefGoogle Scholar
  25. Mallez, S., Castagnone, C., Espada, M., Vieira, P., Eisenback, J. D., Harrell, M., Mota, M., Aikawa, T., Akiba, M., Kosaka, H., Castagnone-Sereno, P., & Guillemaud, T. (2014). Worldwide invasion routes of the pinewood nematode: what can we infer from population genetics analyses? Biological Invasions, 17, 1199–1213.Google Scholar
  26. Marshall, T. C., Slate, J. B. K. E., Kruuk, L. E. B., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639–655.CrossRefGoogle Scholar
  27. Metzgar, D., Bytof, J., & Wills, C. (2000). Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research, 10, 72–80.PubMedPubMedCentralGoogle Scholar
  28. Montarry, J., Jan, P. L., Gracianne, C., Overall, A. D. J., Bardou-Valette, S., Olivier, E., Fournet, S., Grenier, E., & Petit, E. J. (2015). Heterozygote deficits in cyst plant-parasitic nematodes: possible causes and consequences. Molecular Ecology, 24, 1654–1667.CrossRefGoogle Scholar
  29. Mulet, K., Fargette, M., Richaud, M., Genson, G., & Castagnone-Sereno, P. (2011). Isolation of microsatellites from an enriched genomic library of the plant-parasitic nematode Meloidogyne incognita and their detection in other root-knot nematode species. European Journal of Plant Pathology, 129, 501–505.CrossRefGoogle Scholar
  30. Nicol, J. M., Elekçioğlu, I. H., Bolat, N., & Rivoal, R. (2007). The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control. Communications in Agricultural and Applied Biological Sciences, 72, 677–686.PubMedGoogle Scholar
  31. Niu, W., Wang, X., Li, H., Ju, Y., & Wan, W. (2016). Duplex-PCR detection for Heterodera avenae and H. filipjevi based on mtDNA-COI sequences. Scientia Agricultura Sinica, 49, 1499–1509.Google Scholar
  32. Peakall, R. O. D., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.Google Scholar
  33. Picard, D., Plantard, O., Scurrah, M., & Mugniéry, D. (2004). Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Molecular Ecology, 13, 2899–2908.CrossRefGoogle Scholar
  34. Plantard, O., & Porte, C. (2004). Population genetic structure of the sugar beet cyst nematode Heterodera schachtii: a gonochoristic and amphimictic species with highly inbred but weakly differentiated populations. Molecular Ecology, 13, 33–41.Google Scholar
  35. Raymond, M., & Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248–249.Google Scholar
  36. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43, 223–225.CrossRefGoogle Scholar
  37. Saint-Laurent, R., Legault, M., & Bernatchez, L. (2003). Divergent selection maintains adaptive differentiation despite high gene flow between sympatric rainbow smelt ecotypes (Osmerus mordax Mitchill). Molecular Ecology, 12, 315–330.CrossRefGoogle Scholar
  38. Selkoe, K. A., & Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615–629.Google Scholar
  39. Silva, A. T. D., Penna, J. C. V., Goulart, L. R., Santos, M. A. D., & Arantes, N. E. (2000). Genetic variability among and within races of Heterodera glycines Ichinohe assessed by RAPD markers. Genetics and Molecular Biology, 23, 223–229.CrossRefGoogle Scholar
  40. Sun, J. T., Zhang, Y. K., Ge, C., & Hong, X. Y. (2011). Mining and characterization of sequence tagged microsatellites from the brown planthopper Nilaparvata lugens. Journal of Insect Science, 11, 134.CrossRefGoogle Scholar
  41. Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., & Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535–538.Google Scholar
  42. Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genic microsatellite markers in plants, features and applications. Trends in Biotechnology, 23, 48–55.CrossRefGoogle Scholar
  43. Viard, F., El-Kassaby, Y. A., & Ritland, K. (2001). Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome, 44, 336–344.CrossRefGoogle Scholar
  44. Victoria, F. C., Da Maia, L. C., & De Oliveira, A. C. (2011). In silico comparative analysis of SSR markers in plants. BMC Plant Biology, 11, 15–29.CrossRefGoogle Scholar
  45. Villate, L., Esmenjaud, D., Coedel, S., & Plantard, O. (2009). Development of nine polymorphic microsatellite markers for the phytoparasitic nematode Xiphinema index, the vector of the grapevine fanleaf virus. Molecular Ecology Resources, 9, 229–232.CrossRefGoogle Scholar
  46. Wahlund, S. (1928). Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre ausbetrachtet. Hereditas, 11, 65–106.CrossRefGoogle Scholar
  47. Wallace, H. R. (1968). The dynamics of nematode movement. Annual Review of Phytopathology, 6, 91–114.CrossRefGoogle Scholar
  48. Wang, H. M., Zhao, H., & Chu, D. (2015a). Genetic structure analysis of populations of the soybean cyst nematode, Heterodera glycines, from north China. Nematology, 17, 591–600.CrossRefGoogle Scholar
  49. Wang, G., Li, E. F., Mao, Z. C., & Xie, B. Y. (2015b). Development of polymorphic microsatellites for Meloidogyne incognita, through screening predicted microsatellite loci based on genome sequence. Russian Journal of Genetics, 51, 116–120.CrossRefGoogle Scholar
  50. Weir, B. S., & Cockerham, C. C. (1984). Estimating f-statistics for the analysis of population structure. Evolution, 38, 1358–1370.PubMedGoogle Scholar
  51. Weng, Y., Azhaguvel, P., Michels Jr., G. J., & Rudd, J. C. (2007). Cross-species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids. Insect Molecular Biology, 16, 613–622.PubMedGoogle Scholar
  52. Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation: a review. Molecular Ecology, 11, 1–16.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  1. 1.Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant PathologyNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations