Advertisement

European Journal of Epidemiology

, Volume 34, Issue 4, pp 327–331 | Cite as

Unreformed nutritional epidemiology: a lamp post in the dark forest

  • John P. A. IoannidisEmail author
COMMENTARY

Giovannucci disagrees [1] that reform is needed [2, 3, 4] in nutritional epidemiology. He argues that nutritional effects are large, and that traditional means of measuring exposure and handling confounding secure reliable answers. Complexity is manageable through readily definable diet patterns, important questions are obvious, we pretty much know the answers. Analyses demonstrate the wisdom of our hypotheses. Giovannucci eloquently admits searching under the lamp post, confident that whatever is worth finding is right there.

Nutritional epidemiologists valiantly work in an important, challenging frontier of science and health. However, methods used to-date (even by the best scientists with best intentions) have yielded little reliable, useful information. The growing obesity pandemic suggests that we have little reliable knowledge to communicate about optimal diet, people are not convinced and/or cannot adhere to act on it. Probably we fail on all those fronts. Superimposed financial...

Notes

References

  1. 1.
    Giovannucci E. Nutritional epidemiology: forest, trees and leaves. Eur J Epidemiol. 2019.  https://doi.org/10.1007/s10654-019-00488-4.CrossRefPubMedGoogle Scholar
  2. 2.
    Trepanowski JF, Ioannidis PA. Limiting dependence on nonrandomized studies and improving randomized trials in human nutrition research: why and how. Adv Nutr. 2018;9:367–77.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ioannidis JP. Implausible results in human nutrition research. BMJ. 2013;347:f6698.CrossRefPubMedGoogle Scholar
  4. 4.
    Ioannidis JP. The challenge of reforming nutritional epidemiologic research. JAMA. 2018;320:969–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Young SS, Karr A. Deming, data and observational studies. Significance. 2011;8(3):116–20.CrossRefGoogle Scholar
  6. 6.
    Jenkins DJA, Spence JD, Giovannucci EL, Kim YI, Josse R, Vieth R, Blanco Mejia S, Viguiliouk E, Nishi S, Sahye-Pudaruth S, Paquette M, Patel D, Mitchell S, Kavanagh M, Tsirakis T, Bachiri L, Maran A, Umatheva N, McKay T, Trinidad G, Bernstein D, Chowdhury A, Correa-Betanzo J, Del Principe G, Hajizadeh A, Jayaraman R, Jenkins A, Jenkins W, Kalaichandran R, Kirupaharan G, Manisekaran P, Qutta T, Shahid R, Silver A, Villegas C, White J, Kendall CWC, Pichika SC, Sievenpiper JL. Supplemental vitamins and minerals for CVD prevention and treatment. J Am Coll Cardiol. 2018;71(22):2570–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M, Fu J, Cai Y, Shi X, Zhang Y, Cui Y, Sun N, Li X, Cheng X, Wang J, Yang X, Yang T, Xiao C, Zhao G, Dong Q, Zhu D, Wang X, Ge J, Zhao L, Hu D, Liu L, Hou FF, CSPPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015;313(13):1325–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Baron JA, Barry EL, Mott LA, et al. A trial of calcium and vitamin D for the prevention of colorectal adenomas. N Engl J Med. 2015;373:1519–30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44.  https://doi.org/10.1056/NEJMoa1809944.CrossRefPubMedGoogle Scholar
  10. 10.
    Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;1(348):g2035.  https://doi.org/10.1136/bmj.g2035.CrossRefGoogle Scholar
  11. 11.
    Trajanoska K, Morris JA, Oei L, Zheng HF, Evans DM, Kiel DP, Ohlsson C, Richards JB, Rivadeneira F, GEFOS/GENOMOS consortium and the 23andMe research team. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. BMJ. 2018;362:k3225.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Risk and Prevention Study Collaborative Group, Roncaglioni MC, Tombesi M, Avanzini F, Barlera S, Caimi V, Longoni P, Marzona I, Milani V, Silletta MG, Tognoni G, Marchioli R. n-3 fatty acids in patients with multiple cardiovascular risk factors. N Engl J Med. 2013;368(19):1800–8.CrossRefGoogle Scholar
  13. 13.
    Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, Gibson H, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med. 2019;380(1):23–32.  https://doi.org/10.1056/NEJMoa1811403.CrossRefPubMedGoogle Scholar
  14. 14.
    ASCEND Study Collaborative Group, Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, Murphy K, Aung T, Haynes R, Cox J, Murawska A, Young A, Lay M, Chen F, Sammons E, Waters E, Adler A, Bodansky J, Farmer A, McPherson R, Neil A, Simpson D, Peto R, Baigent C, Collins R, Parish S, Armitage J. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379(16):1540–50.CrossRefGoogle Scholar
  15. 15.
    Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KH, AlAbdulghafoor FK, Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2018;7:CD003177.PubMedGoogle Scholar
  16. 16.
    Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015;6:CD011737.  https://doi.org/10.1002/14651858.cd011737.CrossRefGoogle Scholar
  17. 17.
    Hamley S. The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials. Nutr J. 2017;16(1):30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388(10043):465–75.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Baudry J, Assmann KE, Touvier M, Allès B, Seconda L, Latino-Martel P, Ezzedine K, Galan P, Hercberg S, Lairon D, Kesse-Guyot E. Association of frequency of organic food consumption with cancer risk: findings from the NutriNet-Santé Prospective Cohort Study. JAMA Intern Med. 2018;178(12):1597–606.CrossRefPubMedGoogle Scholar
  21. 21.
    Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Appel LJ, Van Horn L. Did the PREDIMED trial test a Mediterranean diet? N Engl J Med. 2013;368(14):1353–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean diet; a literature review. Nutrients. 2015;7(11):9139–53.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    D’Alessandro A, De Pergola G. The Mediterranean Diet: its definition and evaluation of a priori dietary indexes in primary cardiovascular prevention. Int J Food Sci Nutr. 2018;69(6):647–59.CrossRefPubMedGoogle Scholar
  25. 25.
    Wtanabe K, Stringer S, Frei O, Mirkov MU, Polderman TJC, van der Slui S, et al. A global overview of pleiotropy and genetic architecture in complex traits. BioRxiv. 2018.  https://doi.org/10.1101/500090.CrossRefGoogle Scholar
  26. 26.
    Li Y, Pan A, Wang DD, Liu X, Dhana K, Franco OH, Kaptoge S, Di Angelantonio E, Stampfer M, Willett WC, Hu FB. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation. 2018;138(4):345–55.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Springmann M, Mason-D’Croz D, Robinson S, Wiebe K, Godfray HCJ, Rayner M, et al. Health-motivated taxes on red and processed meat: a modelling study on optimal tax levels and associated health impacts. PLoS ONE. 2008;13(11):e0204139.CrossRefGoogle Scholar
  28. 28.
    Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knüppel S, Iqbal K, et al. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73.PubMedGoogle Scholar
  29. 29.
    Zhao LG, Zhang QL, Zheng JL, Li HL, Zhang W, Tang WG, et al. Dietary, circulating beta-carotene and risk of all-cause mortality: a meta-analysis from prospective studies. Sci Rep. 2016;6:26983.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schoenfeld JD, Ioannidis JP. Is everything we eat associated with cancer? A systematic cookbook review. Am J Clin Nutr. 2013;97(1):127–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Archer E, Hand GA, Blair SN. Validity of US nutritional surveillance: National Health and Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE. 2013;8(10):e76632.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bellach B, Kohlmeier L. Energy adjustment does not control for differential recall bias in nutritional epidemiology. J Clin Epidemiol. 1998;51(5):393–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Bernstein DM, Loftus EF. The consequences of false memories for food preferences and choices. Perspect Psychol Sci. 2009;4(2):135–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Straube B. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behav Brain Funct. 2012;8(1):35.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Johnson MK. Memory and reality. Am Psychol. 2006;61(8):760–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Peace KE, Yin J, Rochani H, Pandeya S, Young S. A serious flaw in nutrition epidemiology: a meta-analysis study. Int J Biostat. 2018.  https://doi.org/10.1515/ijb-2018-0079.CrossRefPubMedGoogle Scholar
  38. 38.
    Stang PE, Ryan PB, Overhage JM, Schuemie MJ, Hartzema AG, Welebob E. Variation in choice of study design: findings from the epidemiology design decision inventory and evaluation (EDDIE) survey. Drug Saf. 2013;36(S1):15–25.CrossRefGoogle Scholar
  39. 39.
    Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, et al. Many analysts, one data set: making transparent how variations in analytic choices affect results. Adv Methods Pract Psychol Sci. 2018;1(3):337–56.CrossRefGoogle Scholar
  40. 40.
    Serghiou S, Patel CJ, Tan YY, Koay P, Ioannidis JP. Field-wide meta-analyses of observational associations can map selective availability of risk factors and the impact of model specifications. J Clin Epidemiol. 2016;71:58–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Patel CJ, Burford B, Ioannidis JP. Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. J Clin Epidemiol. 2015;68(9):1046–58.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993;328(20):1450–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS ONE. 2013;8(9):e74558.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ioannidis JP, Adami H-O. Nested randomized trials in large cohorts and biobanks: studying the health effects of lifestyle factors. Epidemiology. 2008;19(1):75–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Kavvoura FK, Liberopoulos G, Ioannidis JP. Selection in reported epidemiological risks: an empirical assessment. PLoS Med. 2007;4(3):e79.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Patel CJ, Ioannidis JP. Studying the elusive environment in large scale. JAMA. 2014;311(21):2173–4.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Patel CJ, Ioannidis JP. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68(11):1096–100.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Patel CJ, Cullen MR, Ioannidis JP, Butte AJ. Systematic evaluation of environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. Int J Epidemiol. 2012;41(3):828–43.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Patel CJ, Bhattacharya J, Butte AJ. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS ONE. 2010;5(5):e10746.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tzoulaki I, Patel CJ, Okamura T, et al. A nutrient-wide association study on blood pressure. Circulation. 2012;126(21):2456–64.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ioannidis JPA, Loy EY, Poulton R, et al. Researching genetic versus nongenetic determinants of disease: a comparison and proposed unification. Sci Transl Med. 2009;1(7):7ps8.CrossRefPubMedGoogle Scholar
  52. 52.
    Ioannidis JPA, Klavans R, Boyack KW. Thousands of scientists publish a paper every five days. Nature. 2018;561(7722):167–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Krewski D, Burnett R, Goldberg MS, Hoover K, Siematicky J, Jerrett M, et al. Reanalysis of the Harvard Six Cities study and the American Cancer Society study of particulate air pollution and mortality. Health Eff Inst Special Rep. 2000.  https://doi.org/10.1080/15287390306424.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Meta-Research Innovation Center at Stanford (METRICS), and Departments of Medicine, Health Research and Policy, Biomedical Data Science, and StatisticsStanford UniversityStanfordUSA

Personalised recommendations