Advertisement

Copenhagen Baby Heart Study: a population study of newborns with prenatal inclusion

  • Anne-Sophie Sillesen
  • Anna Axelsson Raja
  • Christian Pihl
  • Ruth Ottilia Birgitta Vøgg
  • Morten Hedegaard
  • Pernille Emmersen
  • Karin Sundberg
  • Ann Tabor
  • Cathrine Vedel
  • Helle Zingenberg
  • Charlotte Kruse
  • Charlotte Wilken-Jensen
  • Tina Holm Nielsen
  • Finn Stener Jørgensen
  • Dorthe Lisbeth Jeppesen
  • Lars Søndergaard
  • Pia R. Kamstrup
  • Børge G. Nordestgaard
  • Ruth Frikke-Schmidt
  • Niels Vejlstrup
  • Heather A. Boyd
  • Henning Bundgaard
  • Kasper Iversen
NEW STUDY
  • 48 Downloads

Abstract

Congenital heart diseases (CHDs) are reported in 0.8% of newborns. Numerous factors influence cardiovascular development and CHD prevalence, and possibly also development of cardiovascular disease later in life. However, known factors explain the probable etiology in only a fraction of patients. Past large-scale population-based studies have made invaluable contributions to the understanding of cardiac disease, but none recruited participants prenatally and focused on the neonatal period. The Copenhagen Baby Heart Study (CBHS) is a population-based study of the prevalence, spectrum, and prognosis of structural and functional cardiac abnormalities. The CBHS will also establish normal values for neonatal cardiac parameters and biomarkers, and study prenatal and early childhood factors potentially affecting later cardiovascular disease risk. The CBHS is an ongoing multicenter, prospective study recruiting from second trimester pregnancy (gestational weeks 18–20) (expected n = 25,000). Information on parents, pregnancy, and delivery are collected. After birth, umbilical cord blood is collected for biochemical analysis, DNA purification, and biobank storage. An echocardiographic examination, electrocardiography, and post-ductal pulse oximetry are performed shortly after birth. Infants diagnosed with significant CHD are referred to a specialist or admitted to hospital, depending on CHD severity. CBHS participants will be followed prospectively as part of specific research projects or regular clinical follow-up for CHD. CBHS design and methodology are described. The CBHS aims to identify new mechanisms underlying cardiovascular disease development and new targets for prevention, early detection, and management of CHD and other cardiac diseases presenting at birth or developing later in life.

Keywords

Congenital heart disease Cardiovascular development Cardiovascular disease Risk factors Epidemiology Reference material 

Notes

Acknowledgements

The CBHS receives financial support from the Danish Heart Association, the Danish Children’s Heart Foundation, Candy’s Foundation, the Toyota Foundation, the Herlev-Gentofte Hospital Research Foundation, and the Gangsted Foundation. The funders have no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of manuscripts; or in decisions to publish results.

Authors contribution

AS wrote the manuscript and participated in the study design and acquisition of data. All authors participated in the study design and acquisition of data. KI and HB had the original idea for the study and wrote the protocol. All authors critically revised the manuscript and approved the final version. AS is the guarantor of the paper.

Compliance with ethical standards

Conflict of interest

The Copenhagen Baby Heart Study receives financial support from the Danish Heart Association, the Danish Children’s Heart Foundation, Candy’s Foundation, the Toyota Foundation, the Herlev-Gentofte Hospital Research Foundation, and the Gangsted Foundation. The funders have no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of manuscripts; or in decisions to publish results. All authors have no other conflicts of interests to declare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained for all individual participants included in the study.

Supplementary material

10654_2018_448_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    Bernier P-L, Stefanescu A, Samoukovic G, Tchervenkov CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13(1):26–34.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Dolk H, Loane M, Garne E, European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000–2005. Circulation. 2011;123(8):841–9.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gilboa SM, Salemi JL, Nembhard WN, Fixler DE, Correa A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999–2006. Circulation. 2010;122(22):2254–63.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    da Rocha LA, Araujo Júnior E, Nardozza LMM, Moron AF. Screening of fetal congenital heart disease: the challenge continues. Rev Bras Cir Cardiovasc Orgao Of Soc Bras Cir Cardiovasc. 2013;28(3):V–VII.CrossRefGoogle Scholar
  5. 5.
    Salomon LJ, Alfirevic Z, Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL, et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2011;37(1):116–26.CrossRefGoogle Scholar
  6. 6.
    Bishop KC, Kuller JA, Boyd BK, Rhee EH, Miller S, Barker P. Ultrasound examination of the fetal heart. Obstet Gynecol Surv. 2017;72(1):54–61.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    International Society of Ultrasound in Obstetrics and Gynecology null, Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2013;41(3):348–59.CrossRefGoogle Scholar
  8. 8.
    Jørgensen DES, Vejlstrup N, Jørgensen C, Maroun LL, Steensberg J, Hessellund A, et al. Prenatal detection of congenital heart disease in a low risk population undergoing first and second trimester screening. Prenat Diagn. 2015;35(4):325–30.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jenkins KJ. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115(23):2995–3014.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Patel SS, Burns TL. Nongenetic risk factors and congenital heart defects. Pediatr Cardiol. 2013;34(7):1535–55.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Tararbit K, Houyel L, Bonnet D, De Vigan C, Lelong N, Goffinet F, et al. Risk of congenital heart defects associated with assisted reproductive technologies: a population-based evaluation. Eur Heart J. 2011;32(4):500–8.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Palinski W. Effect of maternal cardiovascular conditions and risk factors on offspring CVD. Circulation. 2014;129(20):2066–77.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Park K, Wei J, Minissian M, Merz CNB, Pepine CJ. Adverse pregnancy conditions, infertility, and future cardiovascular risk: implications for mother and child. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother. 2015;29(4):391–401.CrossRefGoogle Scholar
  14. 14.
    Koestenberger M. Transthoracic echocardiography in children and young adults with congenital heart disease. ISRN Pediatr. 2012;2012:753481.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zhao Q-M, Ma X-J, Jia B, Huang G-Y. Prevalence of congenital heart disease at live birth: an accurate assessment by echocardiographic screening. Acta Paediatr Oslo Nor 1992. 2013;102(4):397–402.Google Scholar
  16. 16.
    Ishikawa T, Iwashima S, Ohishi A, Nakagawa Y, Ohzeki T. Prevalence of congenital heart disease assessed by echocardiography in 2067 consecutive newborns. Acta Paediatr Oslo Nor 1992. 2001;100(8):e55–60.Google Scholar
  17. 17.
    Cantinotti M, Kutty S, Franchi E, Paterni M, Scalese M, Iervasi G, et al. Pediatric echocardiographic nomograms: what has been done and what still needs to be done. Trends Cardiovasc Med. 2017;27(5):336–49.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Schwartz PJ, Garson A, Paul T, Stramba-Badiale M, Vetter VL, Wren C, et al. Guidelines for the interpretation of the neonatal electrocardiogram: a task force of the European Society of Cardiology. Eur Heart J. 2002;23(17):1329–44.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lancellotti P, Badano LP, Lang RM, Akhaladze N, Athanassopoulos GD, Barone D, et al. Normal Reference Ranges for Echocardiography: rationale, study design, and methodology (NORRE Study). Eur Heart J Cardiovasc Imaging. 2013;14(4):303–8.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Status in Copenhagen—updated August 2017. Ethnic distribution of the population 2017. https://www.kk.dk/sites/default/files/status_paa_koebenhavn_august_2017.pdf. Accessed 15 Aug 2018.
  21. 21.
    Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2006;19(12):1413–30.CrossRefGoogle Scholar
  22. 22.
    Pettersen MD, Du W, Skeens ME, Humes RA. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2008;21(8):922–34.CrossRefGoogle Scholar
  23. 23.
    Sluysmans T, Colan SD. Structural measurements and adjustment for growth. In: Lai WW, Mertens LL, Cohen MS, editors. Echocardiography in congenital and pediatric heart disease. Oxford: Wiley-Blackwell; 2009. p. 53–62.Google Scholar
  24. 24.
    EUROCAT (European Concerted Action on Congenital Anomalies and Twins). EUROCAT Guide 1.3 and reference documents—Instructions for the Registration and Surveillance of Congenital Anomalies [Internet]. 2005. http://www.eurocat-network.eu/content/EUROCAT-Guide-1.3.pdf. Accessed 8 Jan 2018.
  25. 25.
    Dawber TR, Meadors GF, Moore FE. Epidemiological approaches to heart disease: the Framingham study. Am J Public Health Nations Health. 1951;41(3):279–81.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Schnohr P, Jensen G, Nyboe J, Eybjaerg Hansen A. The Copenhagen City Heart Study. A prospective cardiovascular population study of 20,000 men and women. Ugeskr Laeger. 1977;139(32):1921–3.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Frikke-Schmidt R, Nordestgaard BG, Stene MCA, Sethi AA, Remaley AT, Schnohr P, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299(21):2524–32.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9.CrossRefGoogle Scholar
  30. 30.
    Sempos CT, Bild DE, Manolio TA. Overview of the Jackson Heart Study: a study of cardiovascular diseases in African American men and women. Am J Med Sci. 1999;317(3):142–6.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wong N. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;25:11.Google Scholar
  32. 32.
    Fyler DC, Buckley LP, Hellenbrand WE, Cohn HE, Nadas AS. 104 new england regional infant cardiac program (NERICP) Effects on Care Delivery. Pediatr Res. 1978;12(S4):381.CrossRefGoogle Scholar
  33. 33.
    Talner CN. Report of the New England Regional Infant Cardiac Program, by Donald C. Fyler, MD, Pediatrics, 1980;65(suppl):375–461. Pediatrics. 1998;102(1 Pt 2):258–9.Google Scholar
  34. 34.
    Ferencz C, Rubin JD, Loffredo CA, Magee CM. Epidemiology of congenital heart disease, the Baltimore–Washington Infant Study (1981–1989). Perspectives in Pediatric Cardiology. Vol 4. MountKisco, NY: Futura Publishing Co.Inc; 1993.Google Scholar
  35. 35.
    Hinton RB. Genetic and environmental factors contributing to cardiovascular malformation: a unified approach to risk. J Am Heart Assoc Cardiovasc Cerebrovasc Dis [Internet]. 2013 Jun 21 [cited 2018 Mar 27];2(3). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698798/. Accessed 27 Mar 2018.
  36. 36.
    Cantinotti M, Scalese M, Molinaro S, Murzi B, Passino C. Limitations of current echocardiographic nomograms for left ventricular, valvular, and arterial dimensions in children: a critical review. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2012;25(2):142–52.CrossRefGoogle Scholar
  37. 37.
    Schwartz PJ, Stramba-Badiale M, Segantini A, Austoni P, Bosi G, Giorgetti R, et al. Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med. 1998;338(24):1709–14.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yoshinaga M, Ushinohama H, Sato S, Tauchi N, Horigome H, Takahashi H, et al. Electrocardiographic screening of 1-month-old infants for identifying prolonged QT intervals. Circ Arrhythm Electrophysiol. 2013;6(5):932–8.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kim H, Hur M, Moon H-W, Somma SD. Reference Intervals of Platelets, Lymphocytes and Cardiac Biomarkers in Umbilical Cord Blood. 2017 [cited 2017 Oct 18]; http://www.intechopen.com/books/umbilical-cord-blood-banking-for-clinical-application-and-regenerative-medicine/reference-intervals-of-platelets-lymphocytes-and-cardiac-biomarkers-in-umbilical-cord-blood. Accessed 18 Oct 2018.
  41. 41.
    Glasser L, Sutton N, Schmeling M, Machan JT. A comprehensive study of umbilical cord blood cell developmental changes and reference ranges by gestation, gender and mode of delivery. J Perinatol Off J Calif Perinat Assoc. 2015;35(7):469–75.CrossRefGoogle Scholar
  42. 42.
    Kotaska K, Urinovska R, Klapkova E, Prusa R, Rob L, Binder T. Re-evaluation of cord blood arterial and venous reference ranges for pH, pO(2), pCO(2), according to spontaneous or cesarean delivery. J Clin Lab Anal. 2010;24(5):300–4.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Perkins SL, Livesey JF, Belcher J. Reference intervals for 21 clinical chemistry analytes in arterial and venous umbilical cord blood. Clin Chem. 1993;39(6):1041–4.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Qaiser DH, Sandila MP, Omair A, Ghori GM. Correlation of routine haematological parameters between normal maternal blood and the cord blood of healthy newborns in selected hospitals of Karachi. J Coll Physicians Surg-Pak JCPSP. 2013;23(2):128–31.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang R, Dong S, Ma W-W, Cai X-P, Le Z-Y, Xiao R, et al. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS ONE. 2017;12(2):e0171934.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Chaix MA, Andelfinger G, Khairy P. Genetic testing in congenital heart disease: a clinical approach. World J Cardiol. 2016;8(2):180–91.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Triedman JK, Newburger JW. Trends in congenital heart disease: the next decade. Circulation. 2016;133(25):2716–33.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120(6):923–40.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vrangbæk K. The health system in Denmark. Eurohealth. 2008;14(1):7.Google Scholar
  50. 50.
    Dansk Føtalmedicinsk Database (The Danish Fetal Medicine database)—National annual report 2016 [Internet]. 2016. http://www.dfms.dk/images/foetodatabase/Arsrapport_FOTO_2016_final_anonymiseret.pdf. Accessed 18 Sept 2018.
  51. 51.
    Schmidt M, Pedersen L, Sørensen HT. The Danish civil registration system as a tool in epidemiology. Eur J Epidemiol. 2014;29(8):541–9.CrossRefGoogle Scholar
  52. 52.
    Lynge E, Sandegaard JL, Rebolj M. The Danish national patient register. Scand J Public Health. 2011;39(7 Suppl):30–3.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Knudsen LB, Olsen J. The Danish medical birth registry. Dan Med Bull. 1998;45(3):320–3.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Helweg-Larsen K. The Danish register of causes of death. Scand J Public Health. 2011;39(7 Suppl):26–9.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Erichsen R, Lash TL, Hamilton-Dutoit SJ, Bjerregaard B, Vyberg M, Pedersen L. Existing data sources for clinical epidemiology: the Danish national pathology registry and data bank. Clin Epidemiol. 2010;9(2):51–6.CrossRefGoogle Scholar
  56. 56.
    Storm HH, Michelsen EV, Clemmensen IH, Pihl J. The Danish cancer registry—history, content, quality and use. Dan Med Bull. 1997;44(5):535–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kildemoes HW, Sørensen HT, Hallas J. The Danish national prescription registry. Scand J Public Health. 2011;39(7 Suppl):38–41.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Anne-Sophie Sillesen
    • 1
    • 2
    • 3
  • Anna Axelsson Raja
    • 2
    • 3
  • Christian Pihl
    • 2
    • 3
  • Ruth Ottilia Birgitta Vøgg
    • 2
    • 3
    • 4
  • Morten Hedegaard
    • 3
    • 5
  • Pernille Emmersen
    • 3
    • 5
  • Karin Sundberg
    • 3
    • 6
  • Ann Tabor
    • 3
    • 6
  • Cathrine Vedel
    • 3
    • 6
  • Helle Zingenberg
    • 3
    • 7
  • Charlotte Kruse
    • 3
    • 8
  • Charlotte Wilken-Jensen
    • 3
    • 9
  • Tina Holm Nielsen
    • 3
    • 9
  • Finn Stener Jørgensen
    • 3
    • 10
  • Dorthe Lisbeth Jeppesen
    • 3
    • 11
  • Lars Søndergaard
    • 1
    • 3
  • Pia R. Kamstrup
    • 3
    • 12
  • Børge G. Nordestgaard
    • 3
    • 12
  • Ruth Frikke-Schmidt
    • 3
    • 13
  • Niels Vejlstrup
    • 1
    • 3
  • Heather A. Boyd
    • 4
  • Henning Bundgaard
    • 1
    • 3
  • Kasper Iversen
    • 2
    • 3
  1. 1.Department of Cardiology, The Heart CentreCopenhagen University Hospital RigshospitaletCopenhagenDenmark
  2. 2.Department of CardiologyCopenhagen University Hospital HerlevCopenhagenDenmark
  3. 3.Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of Epidemiology ResearchStatens Serum InstitutCopenhagenDenmark
  5. 5.Department of ObstetricsCopenhagen University Hospital RigshospitaletCopenhagenDenmark
  6. 6.Center of Fetal Medicine, Department of ObstetricsCopenhagen University Hospital RigshospitaletCopenhagenDenmark
  7. 7.Center of Fetal Medicine, Department of Obstetrics and GynecologyCopenhagen University Hospital HerlevCopenhagenDenmark
  8. 8.Department of PediatricsCopenhagen University Hospital HerlevCopenhagenDenmark
  9. 9.Department of Obstetrics and GynecologyCopenhagen University Hospital HvidovreCopenhagenDenmark
  10. 10.Fetal Medicine Unit, Department of Obstetrics and GynecologyCopenhagen University Hospital HvidovreCopenhagenDenmark
  11. 11.Department of PediatricsCopenhagen University Hospital HvidovreCopenhagenDenmark
  12. 12.Department of Clinical BiochemistryCopenhagen University Hospital HerlevCopenhagenDenmark
  13. 13.Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark

Personalised recommendations