Advertisement

Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece

  • 55 Accesses

Abstract

The presence of phosphorus (P) and heavy metals (HMs) in surface sediments originating from lakes Volvi, Kerkini, and Doirani (N. Greece), as well as their fractionation patterns, were investigated. No statistically significant differences in total P content were observed among the studied lakes, but notable differences were observed among sampling periods. HM contents in all lakes presented a consistent trend, i.e., Mn > Cr > Zn > Pb > Ni > Cu > Cd, while the highest concentrations were recorded in Lake Kerkini. Most of the HMs exceeded probable effect level value indicating a probable biological effect, while Ni in many cases even exceeded threshold effects level, suggesting severe toxic effects. P was dominantly bound to metal oxides, while a significant shift toward the labile fractions was observed during the spring period. The sum of potentially bioavailable HM fractions followed a downward trend of Mn > Cr > Pb > Zn > Cu > Ni > Cd for most lakes. The geoaccumulation index Igeo values of Cr, Cu, Mn, Ni, and Zn in all lakes characterized the sediments as “unpolluted,” while many sediments in lakes Volvi and Kerkini were characterized as “moderately to heavily polluted” with regard to Cd. The descending order of potential ecological risk \(E_{\text{r}}^{i}\) was Cd > Pb > Cu > Ni > Cr > Zn > Mn for all the studied lakes. Ni and Cr presented the highest toxic risk index values in all lake sediments. Finally, the role of mineralogical divergences among lake sediments on the contamination degree was signified.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alomary, A. A., & Belhadj, S. (2007). Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment,135(1–3), 265–280.

  2. Alvarez, M. B., Malla, M. E., & Batistoni, D. A. (2001). Comparative assessment of two sequential chemical extraction schemes for the fractionation of cadmium, chromium, lead and zinc in surface coastal sediments. Analytical and Bioanalytical Chemistry,369(1), 81–90.

  3. Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere,69(9), 1428–1437.

  4. Batley, G. E., & Gardner, D. (1978). A study of copper, lead and cadmium speciation in some estuarine and coastal marine waters. Estuarine and Coastal Marine Science,7(1), 59–70.

  5. Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., et al. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environmental Geochemistry and Health,39, 611–634.

  6. Cavalcante, H., Araújo, F., Noyma, N. P., & Becker, V. (2018). Phosphorus fractionation in sediments of tropical semiarid reservoirs. Science of the Total Environment,619–620, 1022–1029.

  7. CCME. (2002). Canadian Council of Ministers of the Environment, 2002. Winnipeg: Canadian Environmental Quality Guidelines.

  8. Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440, https://doi.org/10.1016/j.chemosphere.2006.09.030.

  9. Chen, Y.-M., Gao, J.-B., Yuan, Y.-Q., Ma, J., & Yu, S. (2016). Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Continental Shelf Research,124, 125–133.

  10. Cheng, H., Li, M., Zhao, C., Yang, K., Li, K., Peng, M., et al. (2015). Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. Journal of Geochemical Exploration,157, 15–26.

  11. Christophoridis, C., & Fytianos, K. (2006). Conditions affecting the release of phosphorus from surface lake sediments. Journal of Environmental Quality,35(4), 1181–1192.

  12. Cook, H. E., Johnson, P. D., Matti, J. C., & Zemmels, I. (1975). Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. In D. E. Hayes, L. A. Frakes, et al. (Eds.), Init. Repts. DSDP (pp. 999-1007). 28: Washington (U.S. Govt. Printing Office).

  13. Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma,64(3), 197–214.

  14. de Groot, C. J., & Golterman, H. L. (1990). Sequential fractionation of sediment phosphate. Hydrobiologia,192(2–3), 143–148.

  15. Filipek, L. H., & Owen, R. M. (1979). Geochemical associations and grain-size partitioning of heavy metals in lacustrine sediments. Chemical Geology,26(1–2), 105–117.

  16. Forstner, U., & Whitman, G. T. W. (1981). Metal pollution in the aquatic environment (p. 486). Berlin: Springer.

  17. Francke, A., Wagner, B., Leng, M. J., et al. (2013). A late glacial to holocene record of environmental change from Lake Dojran (Macedonia, Greece). Climate of the Past,9, 481–498.

  18. Fu, J., Zhao, C., Luo, Y., Liu, C., Liu, C., Kyzas, G., et al. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials,270, 102–109.

  19. Fytianos, K., & Kotzakioti, A. (2005). Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environmental Monitoring and Assessment,100(1–3), 191–200.

  20. Fytianos, K., & Lourantou, A. (2004). Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environment International,30(1), 11–17.

  21. Gantidis, N., Pervolarakis, M., & Fytianos, K. (2007). Assessment of the quality characteristics of two lakes (Koronia and Volvi) of N. Greece. Environmental Monitoring and Assessment,125, 175–181.

  22. Gasparatos, D., Massas, I., & Godelitsas, A. (2019). Fe–Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: Current knowledge and gaps. CATENA,182, 104106.

  23. Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecological Engineering,81, 243–255.

  24. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14, 975–1001.

  25. Holdren, G. C., Jr., & Armstrong, D. E. (1980). Factors affecting phosphorus release from intact lake sediment cores. Environmental Science and Technology,14(1), 79–87.

  26. Huang, J. J., Wang, C., Fang, B., Feng, L., Fang, F., Li, Z., et al. (2017). Characterization of phosphorus fractions in the soil of water-level-fluctuation zone and unflooded bankside in Pengxi River, Three Gorges Reservoir. Huanjing Kexue/Environmental Science,38(9), 3673–3681.

  27. Hupfer, M., Gächter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences,57(4), 305–324.

  28. ISO. (2004). ISO 6878:2004 water quality—Determination of phosphorus—Ammonium molybdate spectrometric method.

  29. Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research,38(3), 569–578. https://doi.org/10.1016/j.watres.2003.10.042.

  30. Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment,141(1), 35–47. https://doi.org/10.1007/s10661-007-9876-y.

  31. Jain, C. K., Gurunadha-Rao, V. V. S., Prakash, B. A., Mahesh-Kumar, K., & Yoshida, M. (2010). Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environmental Monitoring and Assessment,166(1–4), 57–67.

  32. Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere,46(8), 1147–1155.

  33. Kalogridi, E.-C., Christophoridis, C., Bizani, E., Drimaropoulou, G., & Fytianos, K. (2014). Part II: Temporal and spatial distribution of multiclass pesticide residues in lake sediments of northern Greece: Application of an optimized MAE–LC–MS/MS pretreatment and analytical method. Environmental Science and Pollution Research,21, 7252–7262.

  34. Li, F., Huang, J., Zeng, G., Yuan, X., Li, X., Liang, J., et al. (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration,132, 75–83.

  35. Li, F., Zhang, J., Liu, C., Xiao, M., & Wu, Z. (2018). Distribution, bioavailability and probabilistic integrated ecological risk assessment of heavy metals in sediments from Honghu Lake, China. Process Safety and Environmental Protection,116, 169–179.

  36. Li, Y., Wang, X. L., Huang, G. H., Zhang, B. Y., & Guo, S. H. (2009). Adsorption of Cu and Zn onto Mn/Fe oxides and organic materials in the extractable fractions of river surficial sediments. Soil and Sediment Contamination: An International Journal,18(1), 87–101.

  37. Lopez, D. L., Gierlowski-Kordesch, E., & Hollenkamp, C. (2010). Geochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio. Water, Air, and Soil Pollution,213, 27–45.

  38. Luo, Y. M., & Christie, P. (1998). Choice of extraction technique for soil reducible trace metals determines the subsequent oxidisable metal fraction in sequential extraction schemes. International Journal of Environmental Analytical Chemistry,72(1), 59–75.

  39. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater systems. Archives of Environmental Contamination and Toxicology,39, 20–31.

  40. Modak, D. P., Singh, K. P., Chandra, H., & Ray, P. K. (1992). Mobile and bound forms of trace metals in sediments of the lower ganges. Water Research,26(11), 1541–1548. https://doi.org/10.1016/0043-1354(92)90075-F.

  41. Muller, G. (1979). Schwermetalle in den sedimenten des Rheins–Vera Enderungenseit. Umschau,79, 778–783.

  42. Nixdorf, B., Rektins, A., & Mischke, U. (2008). Standards and thresholds of the EU water framework directive (WFD)—phytoplankton and lakes. In M. Schmidt, J. Glasson, L. Emmelin, & H. Helbron (Eds.), Standards and thresholds for impact assessment (pp. 301–314). Berlin: Springer.

  43. Ovakoglou, G., Alexandridis, T. K., Crisman, T. L., Skoulikaris, C., & Vergos, G. S. (2016). Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations. International Journal of Applied Earth Observation and Geoinformation,51, 37–46.

  44. Pardo, P., López-Sánchez, J. F., & Rauret, G. (1998). Characterisation, validation and comparison of three methods for the extraction of phosphate from sediments. Analytica Chimica Acta,376(2), 183–195.

  45. Pertsemli, E., & Voutsa, D. (2007). Distribution of heavy metals in Lakes Doirani and Kerkini, Northern Greece. Journal of Hazardous Materials,148(3), 529–537.

  46. Psenner, R., Boström, B., Dinka, M., Pettersson, K., Pucsko, R., & Sager, M. (1988). Fractionation of phosphorus in suspended matter and sediment. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie,30, 98–103.

  47. Ranjbar, Jafarabadi A., Riyahi, Bakhtiyari A., Shadmehri, Toosi A., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere,185(2017), 1090–1111.

  48. Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—A case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials,163(2), 632–644. https://doi.org/10.1016/j.jhazmat.2008.07.048.

  49. Ribeiro, D. C., Martins, G., Nogueira, R., Cruz, J. V., & Brito, A. G. (2008). Phosphorus fractionation in volcanic lake sediments (Azores—Portugal). Chemosphere,70(7), 1256–1263.

  50. Roig, N., Sierra, J., Moreno-Garrido, I., Nieto, E., Gallego, E. P., Schuhmacher, M., et al. (2016). Metal bioavailability in freshwater sediment samples and their influence on ecological status of river basins. Science of the Total Environment,540, 287–296.

  51. Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research,34(7), 2037–2042.

  52. Samanidou, V., & Fytianos, K. (1987). Partitioning of heavy metals into selective chemical fractions in sediments from rivers in northern Greece. The Science of the Total Environment,67(2–3), 279–285.

  53. Scheibye, K., Weisser, J., Borggaard, O. K., Larsen, M. M., Holm, P. E., Vammen, K., et al. (2014). Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua. Chemosphere,95, 556–565.

  54. Selvam, A. P., Priya, S. L., Banerjee, K., Hariharan, G., Purvaja, R., & Ramesh, R. (2013). Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake Southwest Coast of India. Environmental Monitoring and Assessment,184, 5899–5915.

  55. Singovszka, E., Junakova, N., & Balintova, M. (2016). The effect of sediment grain size on heavy metal content in different depth in water reservoir Ruzin, Slovakia. Solid State Phenomena,244, 240–245.

  56. Spagnoli, F., & Andresini, A. (2018). Biogeochemistry and sedimentology of Lago di Lesina (Italy). Science of the Total Environment,643, 868–883.

  57. Stefanidis, P., & Stefanidis, S. (2012). Reservoir sedimentation and mitigationmeasures. Lakes and Reservoirs Research and Management,17(2), 113–117.

  58. Stefanidis, P., Stefanidis, S., & Tziaftani, F. (2011). The threat of alluviation of lakes resulting from torrents (case study: Lake Volvi, north Greece). International Journal of Sustainable Development and Planning,6(3), 325–333.

  59. Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety,84, 117–124.

  60. Tang, Z. W., Yue, Y., & Cheng, J. L. (2009). Pollution characteristics and risks of heavy metals in the sediments from the middle and small rivers in Wuhan. Journal of Soil and Water Conservation,23, 132–136.

  61. Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,51(7), 844–851.

  62. Thomas, R. P., Ure, A. M., Davidson, C. M., Littlejohn, D., Rauret, G., Rubio, R., et al. (1994). Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta,286(3), 423–429. https://doi.org/10.1016/0003-2670(94)85088-7.

  63. Tian, Y., Zhang, H., Hao, H., Cui, S., Zhang, L., Zhao, L., et al. (2017). Relationships between phosphorus fractionations in sediments and phosphorus in overlying water in a constructed wetland: Impact of macrophytes. Desalination and Water Treatment,84, 180–189.

  64. Tomlinson, D., Wilson, J., Harris, C., & Jeffrey, D. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen,33, 566.

  65. Union, E. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. 2000/60/EC. E. Union.

  66. Vogler, P. (1965). Probleme der Phosphatanalytik in der Limnologie und ein neues Verfahren zur Bestimmung von gelöstem Orthophosphat neben kondensierten Phosphaten und organischen Phosphorsäureestern. Internationale Revue der gesamten Hydrobiologie und Hydrographie,50(1), 33–48.

  67. Vouvé, F., Buscail, R., Aubert, D., Labadie, P., Chevreuil, M., Canal, C., et al. (2014). Bages-Sigean and Canet-St Nazaire lagoons (France): Physico-chemical characteristics and contaminant concentrations (Cu, Cd, PCBs and PBDEs) as environmental quality of water and sediment. Environmental Science and Pollution Research,21(4), 3005–3020. https://doi.org/10.1007/s11356-013-2229-1.

  68. Vrhovnik, P., Smuc, N. R., Dolenec, T., Serafimovski, T., & Dolenec, M. (2013). An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environmental Earth Sciences,70, 761–775.

  69. Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake Shandong, East China. CATENA,125, 200–205.

  70. Water, G. M. O. E.-S. S. F. (2014a). River basin management plan for Eastern Macedonia.

  71. Water, G. M. O. E.-S. S. F. (2014b). River basin management plan for central Macedonia.

  72. Wong, C. S. C., Wu, S. C., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2007). Trace metal contamination of sediments in an e-waste processing village in China. Environmental Pollution,145(2), 434–442. https://doi.org/10.1016/j.envpol.2006.05.017.

  73. Yu, S., & Li, X.-D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution,159, 1317–1326.

  74. Yu, T., Zhang, Y., Meng, W., & Hu, X. N. (2012). Characterization of heavy metals in water and sediments in Taihu Lake, China. Environmental Monitoring and Assessment,184, 4367–4382.

  75. Zacharias, I., Bertachas, I., Skoulikidis, N., et al. (2002). Greek Lakes: Limnological overview. Lakes and Reservoirs: Research and Management,7, 55–62.

  76. Zakir, H. M., Shikazono, N., & Otomo, K. (2008). Geochemical distribution of trace metals and assessment of anthrapogenic pollution in sediments of Old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences,6, 661–672.

  77. Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J., & Wen, X. (2016). Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators,69, 331–339.

  78. Zhang, Y., Han, Y., Yang, J., Zhu, L., & Zhong, W. (2017). Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. Journal of Environmental Sciences,62, 31–38.

  79. Zhang, Z., Liu, Y. L., & Duan, X. J. (2006). Research on remarkable affecting factors of phosphorus releasing from sediment in Shuanglong Lake. Journal of Plant Resources and Environment,15(2), 16–19.

  80. Zhou, Q., Gibson, C. E., & Zhu, Y. (2000). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere,42(2), 221–225.

  81. Zhu, Y., Zou, X., Feng, S., & Tang, H. (2006). The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments: A case study of Dongping Lake, China. Environmental Geology,50(5), 753–759.

Download references

Author information

Correspondence to Christophoros Christophoridis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1159 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christophoridis, C., Evgenakis, E., Bourliva, A. et al. Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece. Environ Geochem Health (2020) doi:10.1007/s10653-019-00509-x

Download citation

Keywords

  • Phosphorus
  • Heavy metals
  • Lake sediments
  • Speciation
  • Pollution indicators