Application of biochars and solid fraction of digestate to decrease soil solution Cd, Pb and Zn concentrations in contaminated sandy soils

  • Reinhart Van PouckeEmail author
  • Caleb E. Egene
  • Simon Allaert
  • Manhattan Lebrun
  • Sylvain Bourgerie
  • Domenico Morabito
  • Yong Sik Ok
  • Frederik Ronsse
  • Erik Meers
  • Filip M.G. Tack
Original Paper


Biochar prepared from waste biomass was evaluated as a soil amendment to immobilize metals in two contaminated soils. A 60-day incubation experiment was set up on a French technosol which was heavily contaminated with Pb due to former mining activities. Grass biochar, cow manure biochar (CMB) and two lightwood biochars differing in particle size distribution (LWB1 and LWB2) were amended to the soil at a rate of 2% (by mass). Rhizon soil moisture samplers were employed to assess the Pb concentrations in the soil solution at regular times. After 30 days of incubation, soil solution concentrations in the CMB-amended soil decreased by more than 99% compared to the control. CMB was also applied to a moderately contaminated Flemish soil and resulted in lowered soil solution Cd and Zn concentrations. While the application of 4% CMB resulted in 90% and 80% reductions in soil solution concentrations of Cd and Zn, respectively, the solid fraction of digestate (as a reference) reduced the soil pore water concentrations by only 63% for Cd and 73% for Zn, compared to the concentrations in the control. These results emphasize the potential of biochar to immobilize metals in soil and water systems, thus reducing their phytotoxicity.


Metal contaminated soil Biochar Metal adsorption Cow manure biochar 



  1. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere,99, 19–33. Scholar
  2. Al-Wabel, M. I., Usman, A. R. A., Al-Farraj, A. S., Ok, Y. S., Abduljabbar, A., Al-Faraj, A. I., et al. (2017). Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil. Environmental Geochemistry and Health, 41(4), 1705–1722.CrossRefGoogle Scholar
  3. Argyraki, A., Boutsi, Z., & Zotiadis, V. (2017). Towards sustainable remediation of contaminated soil by using diasporic bauxite: Laboratory experiments on soil from the sulfide mining village of Stratoni, Greece. Journal of Geochemical Exploration,183, 214–222.CrossRefGoogle Scholar
  4. Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety,174, 714–727.CrossRefGoogle Scholar
  5. Askeland, M., Clarke, B., & Paz-Ferreiro, J. (2019). Comparative characterization of biochars produced at three selected pyrolysis temperatures from common woody and herbaceous waste streams. PeerJ,7, e6784.CrossRefGoogle Scholar
  6. Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution,159(2), 474–480. Scholar
  7. Beesley, L., Moreno-Jimenez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution,158(6), 2282–2287. Scholar
  8. Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal (loid) s contaminated soils–to mobilize or to immobilize? Journal of Hazardous Materials,266, 141–166.CrossRefGoogle Scholar
  9. Branzini, A., & Zubillaga, M. S. (2012). Comparative use of soil organic and inorganic amendments in heavy metals stabilization. Applied and Environmental Soil Science. Scholar
  10. Brugger, D., & Windisch, W. M. (2015). Environmental responsibilities of livestock feeding using trace mineral supplements. Animal Nutrition,1(3), 113–118.CrossRefGoogle Scholar
  11. Cao, X. D., Ma, L. N., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology,43(9), 3285–3291. Scholar
  12. Demirbas, A., Pehlivan, E., & Altun, T. (2006). Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. International Journal of Hydrogen Energy,31(5), 613–620. Scholar
  13. Directive, C. (1986). Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. The Official Journal of the European Commission,181, 0006–0012.Google Scholar
  14. Du Laing, G., Vanthuyne, D. R. J., Vandecasteele, B., Tack, F. M. G., & Verloo, M. G. (2007). Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution,147(3), 615–625. Scholar
  15. Egene, C. E., Van Poucke, R., Ok, Y. S., Meers, E., & Tack, F. M. G. (2018). Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. The Science of the Total Environment,626, 195–202. Scholar
  16. Gee, G. W., & Bauder, J. W. (1987). Particle-size analysis. In Methods of soil analysis: Part 1—Physical and mineralogical methods (pp. 377–411). Soil Science Society of America, American Society of Agronomy: Madison, WI.Google Scholar
  17. Gomez, X., Cuetos, M. J., Garcia, A. I., & Moran, A. (2007). An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. Journal of Hazardous Materials,149(1), 97–105. Scholar
  18. Gomez-Eyles, J. L., Beesley, L., Moreno-Jimenez, E., Ghosh, U., Sizmur, T. (2013). The potential of biochar amendments to remediate contaminated soils. Biochar and Soil Biota,4, 100–133.CrossRefGoogle Scholar
  19. Gupta, B. S., Curran, M., Hasan, S., & Ghosh, T. K. (2009). Adsorption characteristics of Cu and Ni on Irish peat moss. Journal of Environmental Management,90(2), 954–960. Scholar
  20. Gusiatin, Z. M., & Kulikowska, D. (2016). Influence of soil aging and stabilization with compost on Zn and Cu fractionation, stability, and mobility. Clean-Soil Air Water,44(3), 272–283. Scholar
  21. Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J., & Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid appalachian soil. Journal of Environmental Quality,41(4), 1096–1106. Scholar
  22. Hogervorst, J., Plusquin, M., Vangronsveld, J., Nawrot, T., Cuypers, A., Van Hecke, E., et al. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environmental Research,103(1), 30–37. Scholar
  23. Houben, D., Pircar, J., & Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. Journal of Geochemical Exploration,123, 87–94. Scholar
  24. Impellitteri, C. A., Lu, Y. F., Saxe, J. K., Allen, H. E., & Peijnenburg, W. J. G. M. (2002). Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International,28(5), 401–410. Scholar
  25. Jones R. J. A., Hiederer R., Rusco E., Loveland P., & Montanarella L. (2004). The map of organic carbon in topsoils in Europe, Version 1.2, September 2003: Explanation of Special Publication Ispra 2004 No.72 (S.P.I.04.72) European Soil Bureau Research Report No.17. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  26. Kim, K. R., Owens, G., & Kwon, S. I. (2010). Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. Journal of Environmental Sciences,22(1), 98–105. Scholar
  27. Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management,28(1), 215–225. Scholar
  28. Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B. Q., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma,158(3–4), 443–449. Scholar
  29. Lebrun, M., Macri, C., Miard, F., Hattab-Hambli, N., Motelica-Heino, M., Morabito, D., et al. (2017). Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. Journal of Geochemical Exploration,182, 149–156. Scholar
  30. Lebrun, M., Miard, F., Nandillon, R., Hattab-Hambli, N., Scippa, G. S., Bourgerie, S., et al. (2018a). Eco-restoration of a mine technosol according to biochar particle size and dose application: study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. Journal of Soils and Sediments,18(6), 2188–2202. Scholar
  31. Lebrun, M., Miard, F., Nandillon, R., Leger, J. C., Hattab-Hambli, N., Scippa, G. S., et al. (2018b). Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere,194, 316–326. Scholar
  32. Leclerc, A., & Laurent, A. (2017). Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014. Science of the Total Environment,590, 452–460.CrossRefGoogle Scholar
  33. Lee, S. J., Lee, M. E., Chung, J. W., Park, J. H., Huh, K. Y., & Jun, G. I. (2013). Immobilization of lead from Pb-contaminated soil amended with peat moss. Journal of Chemistry. Scholar
  34. Lehmann, J., & Joseph, S. (2010). Biochar for environmental management: Science and technology. London: Earthscan.Google Scholar
  35. Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.Google Scholar
  36. Lomaglio, T., Hattab-Hambli, N., Bret, A., Miard, F., Trupiano, D., Scippa, G. S., et al. (2017). Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol. Journal of Geochemical Exploration,182, 138–148. Scholar
  37. Lomaglio, T., Hattab-Hambli, N., Miard, F., Lebrun, M., Nandillon, R., Trupiano, D., et al. (2018). Cd, Pb, and Zn mobility and (bio)availability in contaminated soils from a former smelting site amended with biochar. Environmental Science and Pollution Research,25(26), 25744–25756. Scholar
  38. Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., et al. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of environmental management,186, 285–292.CrossRefGoogle Scholar
  39. Makádi, M., Tomócsik, A., & Orosz, V. (2012). Digestate: A new nutrient source-Review. Biogas: InTech.Google Scholar
  40. Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., et al. (2010). The use of bio-energy crops (Zea mays) for 'phytoattenuation' of heavy metals on moderately contaminated soils: A field experiment. Chemosphere,78(1), 35–41. Scholar
  41. Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology,160, 191–202. Scholar
  42. Nandillon, R., Miard, F., Lebrun, M., Gaillard, M., Sabatier, S., Bourgerie, S., et al. (2019). Effect of biochar and amendments on Pb and As phytotoxicity and phytoavailability in a technosol. CLEAN–Soil, Air, Water, 47(3), 1800220.CrossRefGoogle Scholar
  43. Noll, M. R. (2003). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Journal of Environmental Quality,32(1), 374.CrossRefGoogle Scholar
  44. Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K., et al. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science,3, 195–206.Google Scholar
  45. Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials,185(2–3), 549–574. Scholar
  46. Pognani, M., D'Imporzano, G., Scaglia, B., & Adani, F. (2009). Substituting energy crops with organic fraction of municipal solid waste for biogas production at farm level: A full-scale plant study. Process Biochemistry,44(8), 817–821. Scholar
  47. Priha, O., & Smolander, A. (1999). Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biology and Biochemistry,31(7), 965–977.CrossRefGoogle Scholar
  48. Qian, T. T., Wang, Y. J., Fan, T. T., Fang, G. D., & Zhou, D. M. (2016). A new insight into the immobilization mechanism of Zn on biochar: The role of anions dissolved from ash. Scientific Reports. Scholar
  49. Sigurnjak, I., De Waele, J., Michels, E., Tack, F., Meers, E., & De Neve, S. (2017). Nitrogen release and mineralization potential of derivatives from nutrient recovery processes as substitutes for fossil fuel-based nitrogen fertilizers. Soil Use and Management,33(3), 437–446.CrossRefGoogle Scholar
  50. Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research,48(7), 516–525.CrossRefGoogle Scholar
  51. Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy,105, 47–82. Scholar
  52. Tack, F. M. G. (2010). Trace elements: general soil chemistry, principles and processes. In: Trace elements in soils, pp. 31-59.CrossRefGoogle Scholar
  53. Tack, F. M. G., Verloo, M. G., Vanmechelen, L., & VanRanst, E. (1997). Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Science of the Total Environment,201(2), 113–123. Scholar
  54. Tambone, F., Terruzzi, L., Scaglia, B., & Adani, F. (2015). Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties. Waste Management,35, 55–61. Scholar
  55. Teglia, C., Tremier, A., & Martel, J. L. (2011). Characterization of solid digestates: Part 2, assessment of the quality and suitability for composting of six digested products. Waste and Biomass Valorization,2(2), 113–126. Scholar
  56. Van Poucke, R., Ainsworth, J., Maeseele, M., Ok, Y. S., Meers, E., & Tack, F. M. G. (2018). Chemical stabilization of Cd-contaminated soil using biochar. Applied Geochemistry,88, 122–130. Scholar
  57. Van Poucke, R., Allaert, S., Ok, Y., Pala, M., Ronsse, F., Tack, F., et al. (2019). Metal sorption by biochars: A trade-off between phosphate and carbonate concentration as governed by pyrolysis conditions. Journal of Environmental Management,246, 496–504.CrossRefGoogle Scholar
  58. Van Poucke, R., Nachenius, R. W., Agbo, K. E., Hensgen, F., Buhle, L., Wachendorf, M., et al. (2016). Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass. Bioresource Technology,217, 104–112. Scholar
  59. Van Ranst, E., Verloo, M., Demeyer, A., & Pauwels, J. (1999). Manual for the soil chemistry and fertility laboratory : analytical methods for soils and plants equipment and management of consumables (pp. 1–243). Ghent: University of Ghent, International Training Centre for Post-Graduate Soil Scientists.Google Scholar
  60. Vangronsveld, J., Vanassche, F., & Clijsters, H. (1995). Reclamation of a bare industrial-area contaminated by nonferrous metals—In-situ metal immobilization and revegetation. Environmental Pollution,87(1), 51–59. Scholar
  61. Veihmeyer, F., & Hendrickson, A. (1949). Methods of measuring field capacity and permanent wilting percentage of soils. Soil science,68(1), 75–94.CrossRefGoogle Scholar
  62. Venegas, A., Rigol, A., & Vidal, M. (2016). Effect of ageing on the availability of heavy metals in soils amended with compost and biochar: evaluation of changes in soil and amendment properties. Environmental Science and Pollution Research,23(20), 20619–20627. Scholar
  63. VLAREBO (2008). Besluit van de Vlaamse Regering Houdende Vaststelling van Het Vlaams Reglement Betreffende de Bodemsanering En de Bodembescherming. Emis Vito. Accessed 7 May 2017.Google Scholar
  64. Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere,57(3), 215–224. Scholar
  65. Xiong, W., Sun, Y., & Zeng, Z. (2018). Antimicrobial use and antimicrobial resistance in food animals. Environmental Science and Pollution Research,25(19), 18377–18384.CrossRefGoogle Scholar
  66. Yang, D., Yunguo, L., Shaobo, L., Huang, X., Zhongwu, L., Xiaofei, T., et al. (2017). Potential benefits of biochar in agricultural soils: A review. Pedosphere,27(4), 645–661.CrossRefGoogle Scholar
  67. Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis,41(7), 820–831. Scholar
  68. Zhang, X. K., Wang, H. L., He, L. Z., Lu, K. P., Sarmah, A., Li, J. W., et al. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research,20(12), 8472–8483. Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Reinhart Van Poucke
    • 1
    Email author
  • Caleb E. Egene
    • 1
  • Simon Allaert
    • 1
  • Manhattan Lebrun
    • 2
    • 3
  • Sylvain Bourgerie
    • 2
  • Domenico Morabito
    • 2
  • Yong Sik Ok
    • 4
  • Frederik Ronsse
    • 1
  • Erik Meers
    • 1
  • Filip M.G. Tack
    • 1
  1. 1.Department of Green Chemistry and TechnologyGhent UniversityGhentBelgium
  2. 2.INRA USC1328, LBLGC EA 1207University of OrleansOrléans Cedex 2France
  3. 3.Dipartimento Di Bioscienze E TerritorioUniversità Degli Studi del MolisePescheItaly
  4. 4.Division of Environmental Science and Ecological Engineering, Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI)Korea UniversitySeoulRepublic of Korea

Personalised recommendations