Advertisement

An ecological scenario prediction model for newly created wetlands caused by coal mine subsidence in the Yanzhou, China

  • Mengjie Zhang
  • Xingzhong YuanEmail author
  • Dongjie Guan
  • Hong Liu
  • Kuo Sun
  • Guanxiong Zhang
  • Kehong Wang
  • Lilei Zhou
  • Fang Wang
  • Jinfang Sun
Original Research
  • 25 Downloads

Abstract

The ecological model we developed can simulate the state of wetlands and predict ecosystem development by varying both parameter settings and forcing functions. The newly created wetland resulting from large-scale coal mining is a distinct type of wetland, but existing ecological models for this wetland type are limited in number and scope. The Yanzhou coalfield, located in Shandong Province in China, contains a typical newly created wetland that came into being after coal mining subsidence. We developed an ecological model for this wetland that estimates values for four state variables: phytoplankton biomass (A), zooplankton biomass (Z), sediment biomass (D), and hydrophyte biomass (H). Analysis of the results showed that the model was sensitive to changes in nutrient loading. As nutrient loads increased, plankton biomass increased, and the ratio of zooplankton biomass to phytoplankton biomass (Z/A) decreased. We defined three prediction scenarios for the wetland and calculated their eco-exergies to compare the ecological effects for each scenario. The most effective measures to improve the state of the ecosystem are to reduce the subsidence depth and to decrease nutrient loading.

Keywords

Newly created wetland Yanzhou coalfield subsidence Ecological model Prediction scenario 

Notes

Acknowledgements

We are grateful for the Foundation of State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University (2011DA105287—ZD201402). We appreciate support from the Taiping National Wetland Park and the newly created Wetland Research Station of Zoucheng City, Shandong province, China.

References

  1. Authority, S. C. (1984). Longwall mining. New York: Wiley.Google Scholar
  2. Bendoricchio, G. (2001). Fundamentals of ecological modelling. Netherlands: Elsevier.Google Scholar
  3. Boyd, C. E. (1970). Amino acid, protein, and caloric content of vascular aquatic macrophytes. Ecology,51, 902–906.CrossRefGoogle Scholar
  4. Carpenter, S. R., Cole, J. J., Pace, M. L., & Wilkinson, G. M. (2016). Response of plankton to nutrients, planktivory and terrestrial organic matter: a model analysis of whole-lake experiments. Ecology Letters,19, 230–239.CrossRefGoogle Scholar
  5. Chen, C. W. (1975). Ecological simulation of aquatic environments. Sys. Anal. Simul. Ecol,3, 476–588.Google Scholar
  6. Chen, G. Z., Wang, X. M., Wang, R. W., & Liu, G. J. (2019). Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicology and Environmental Safety,171, 737–745.CrossRefGoogle Scholar
  7. Christensen, V., & Pauly, D. (1992). ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling,61, 169–185.CrossRefGoogle Scholar
  8. Costanza, R., Duplisea, D., & Kautsky, U. (1998). Ecological Modelling on modelling ecological and economic systems with STELLA. Ecological Modelling,110, 1–4.CrossRefGoogle Scholar
  9. Costanza, R., & Gottlieb, S. (2001). Modelling ecological and economic systems with STELLA: Part II. Ecological Modelling,143, 1–7.CrossRefGoogle Scholar
  10. da Rocha, S., Torres, C., Jacovine, L., Leite, H., Gelcer, E., Neves, K., et al. (2018). Artificial neural networks: Modeling tree survival and mortality in the Atlantic Forest biome in Brazil. Science of the Total Environment,645, 655–661.CrossRefGoogle Scholar
  11. Dong, X. G. (2009). The assessment of solar energy resources in Shandong, China. Lanzhou: Lanzhou University.Google Scholar
  12. Gael, D., Sami, S., David, D., Vincent, G., François, G. S., & Jiang, S. H. (2010). An individual-based model to study the reproduction of egg bearing copepods: Application to Eurytemora affinis (Copepoda Calanoida) from the Seine estuary. France. Ecol. Model,185, 1073–1089.Google Scholar
  13. Gurkan, Z., Zhang, J., & Jørgensen, S. E. (2006). Development of a structurally dynamic model for forecasting the effects of restoration of Lake Fure, Denmark. Ecological Modelling,197, 89–102.CrossRefGoogle Scholar
  14. Han, H., Chen, Y., Jørgensen, S. E., Nielsen, S. N., & Hu, W. (2009). A system-dynamic model on the competitive growth between Potamogeton malaianus Miq. and Spirogyra sp. Ecological Modelling,220, 2206–2217.CrossRefGoogle Scholar
  15. Huang, F. X. (2000). Survey, observation and analysis of lake ecology. Beijing: China Standard Press.Google Scholar
  16. Jing, Z. R., Wang, J. M., Zhu, Y. C., & Feng, Y. (2018). Effects of land subsidence resulted from coal mining on soil nutrient distributions in a loess area of China. Journal of Cleaner Production,177, 350–361.CrossRefGoogle Scholar
  17. Jørgensen, S. E. (1976). A eutrophication model for a lake. Ecological Modelling,2, 147–165.CrossRefGoogle Scholar
  18. Jørgensen, S. E. (1986). Structural dynamic model. Ecological Modelling,31, 1–9.CrossRefGoogle Scholar
  19. Jørgensen, S. E. (1992a). Parameters, ecological constraints and exergy. Ecological Modelling,62, 163–170.CrossRefGoogle Scholar
  20. Jørgensen, S. E. (1992b). The shifts in species composition and ecological modelling in hydrobiology. Hydrobiologia,239, 115–129.CrossRefGoogle Scholar
  21. Jørgensen, S. E. (1995a). Exergy and ecological buffer capacities as measures of ecosystem health. Ecosystem Health,1, 150–160.Google Scholar
  22. Jørgensen, S. E. (1995b). The application of ecological indicators to assess the ecological condition of a lake. Lakes & Reservoirs Research & Management,1, 177–182.CrossRefGoogle Scholar
  23. Jørgensen, S. E. (1999). State-of-the-art of ecological modelling with emphasis on development of structural dynamic models. Ecological Modelling,120, 75–96.CrossRefGoogle Scholar
  24. Jørgensen, S. E. (2001). Parameter estimation and calibration by use of exergy. Ecological Modelling,146, 299–302.CrossRefGoogle Scholar
  25. Jørgensen, S. E. (2015). Structurally dynamic models: A new promising model type. Environmental Earth Sciences,74, 7041–7048.CrossRefGoogle Scholar
  26. Jørgensen, S. E., Ladegaard, N., Debeljak, M., & Marques, J. C. (2005). Calculations of exergy for organisms. Ecological Modelling,185, 165–175.CrossRefGoogle Scholar
  27. Jørgensen, S. E., & Mejer, H. (1977). Ecological buffer capacity. Ecological Modelling,3, 39–46.CrossRefGoogle Scholar
  28. Jørgensen, S. E., & Mejer, H. (1979). A holistic approach to ecological modelling. Ecological Modelling,7, 169–189.CrossRefGoogle Scholar
  29. Jørgensen, S. E., Ray, S., Berec, L., & Straskraba, M. (2002). Improved calibration of a eutrophication model by use of the size variation due to succession. Ecological Modelling,153, 269–277.CrossRefGoogle Scholar
  30. Lechner, A. M., Baumgartl, T., Matthew, P., & Glenn, V. (2016). The impact of underground longwall mining on prime agricultural land: A review and research agenda. Land Degradation and Development,27, 1650–1663.CrossRefGoogle Scholar
  31. Lehman, J. T., Botkin, D. B., & Likens, G. E. (1975). The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnology and Oceanography,20, 343–364.CrossRefGoogle Scholar
  32. Marchi, M., Jørgensen, S. E., Becares, E., Corsi, I., Marchettini, N., & Bastianoni, S. (2011). Dynamic model of Lake Chozas (Leon, NW Spain)-decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish. Ecological Modelling,222, 3002–3010.CrossRefGoogle Scholar
  33. Mcandrew, B., & Ahn, C. (2017). Developing an ecosystem model of a floating wetland for water quality improvement on a stormwater pond. Journal of Environmental Management,202, 198–207.CrossRefGoogle Scholar
  34. Mogensen, B.B., & Jørgensen, S.E. (1979). Modelling the distribution of chromium in a Danish Firth. In Proceedings of 1st international conference on state of the art in ecological modelling (pp. 367–374). Copenhagen, 1978.Google Scholar
  35. Müller, F., Schrautzer, J., Reiche, E. W., & Rinker, A. (2006). Ecosystem based indicators in retrogressive successions of an agricultural landscape. Ecol. Indic,6, 63–82.CrossRefGoogle Scholar
  36. Odum, E. P. (1971). Fundamentals of ecology. Philadelphia: Saunders.Google Scholar
  37. Ouyang, Z. Z., Gao, L. M., & Yang, C. (2018). Distribution, sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan, China. Ecotoxicology and Environmental Safety,163, 255–265.CrossRefGoogle Scholar
  38. Peng, T., Chen, X. H., Wang, G. X., Li, Y. H., & Liu, J. (2014). Assessment of coastal wetland ecosystem health based on set pair analysis and triangular fuzzy numbers. Ecology & Environmental Sciences,23, 917–922.Google Scholar
  39. Pereira, G. C., Andrade, L. P., Espindola, R. P., & Ebecken, N. F. F. (2019). Ecological networks simulation by fuzzy ecotoxicological rules. Ecological Modelling,409, 10.CrossRefGoogle Scholar
  40. Ray, S., Bereca, L., Strakrabaa, M., & Jørgensen, S. E. (2001). Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model. Ecological Modelling,140, 219–234.CrossRefGoogle Scholar
  41. Sagehashi, M. (2008). Structural dynamic models. Encyclopedia of Ecology,231, 3397–3403.CrossRefGoogle Scholar
  42. Wang, T. T., Yi, Q. T., Hu, Y. B., Yan, J. P., Yu, H. J., & Dong, X. L. (2013). Eutrophication and nutrient enrichment bioassays in the waters of the Huainan and Huaibei coal mining subsidence areas, Anhui Province. Journal of Lake Science,25, 916–926.CrossRefGoogle Scholar
  43. Xiao, W., Fu, Y. H., Wang, T., & Lv, X. J. (2018). Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy,71, 213–221.CrossRefGoogle Scholar
  44. Xu, F. L., Jørgensen, S. E., Tao, S., & Li, B. G. (1999). Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao). Ecological Modelling,117, 239–260.CrossRefGoogle Scholar
  45. Xu, F. L., Tao, S., Dawson, R. W., Li, P. G., & Cao, J. (2001). Lake ecosystem health assessment: Indicators and methods. Water Research,35, 3157–3167.CrossRefGoogle Scholar
  46. Xu, L. J., Yan, J. P., & Gao, Y. M. (2008). Environmental impact of coal mining subsided water area in Huai nan mining area. Journal of China Coal Society,33, 419–422.Google Scholar
  47. Xu, F., Yang, Z. F., Chen, B., & Zhao, Y. W. (2013a). Development of a structurally dynamic model for ecosystem health prognosis of Baiyangdian Lake, China. Ecological Indicators,29, 398–410.CrossRefGoogle Scholar
  48. Xu, F., Yang, Z. F., Chen, B., & Zhao, Y. W. (2013b). Impact of submerged plants on ecosystem health of the plant-dominated Baiyangdian Lake, China. Ecological Modelling,252, 167–175.CrossRefGoogle Scholar
  49. Xu, F., Zhao, Y. W., Yang, Z. F., & Chen, B. (2013c). Ecosystem health assessment in Baiyangdian Lake. Acta Ecologica Sinica,33, 6904–6912.CrossRefGoogle Scholar
  50. Xuan, Z., & Chang, N. B. (2014). Modeling the climate-induced changes of lake ecosystem structure under the cascade impacts of hurricanes and droughts. Ecological Modelling,288, 79–93.CrossRefGoogle Scholar
  51. Yin, B. L., Li, B., & Shen, F. (2014). Review on studies of wetland definition. Wetland Science,12, 504–514.Google Scholar
  52. Zhang, J. J., Gurkan, Z., & Jørgensen, S. E. (2010). Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models. Ecological Modelling,221, 693–702.CrossRefGoogle Scholar
  53. Zhang, J. J., Jørgensen, S. E., Beklioglu, M., & Ince, O. (2003a). Hysteresis in vegetation shift—Lake Mogan prognoses. Ecological Modelling,164, 227–238.CrossRefGoogle Scholar
  54. Zhang, J. J., Jørgensen, S. E., Tan, C. O., & Beklioglu, M. (2003b). A structurally dynamic modelling—Lake Mogan, Turkey as a case study. Ecological Modelling,164, 103–120.CrossRefGoogle Scholar
  55. Zhao, Y. W., Liu, Y. X., Wu, S. R., Li, Z. M., Zhang, Y., Qin, Y., et al. (2016). Construction and application of an aquatic e.cological model for an emergent-macrophyte-dominated wetland: A case of Hanshiqiao wetland. Ecological Engineering,96, 214–223.CrossRefGoogle Scholar
  56. Zheng, L. G., Chen, X., Dong, X. L., Wei, X. P., Jiang, C. L., & Tang, Q. (2019). Using δ34S–SO4 and δ18O–SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibeim, China. Ecotoxicology and Environmental Safety,181, 231–240.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mengjie Zhang
    • 1
    • 2
    • 3
  • Xingzhong Yuan
    • 1
    • 2
    • 3
    Email author
  • Dongjie Guan
    • 4
  • Hong Liu
    • 1
    • 2
    • 3
  • Kuo Sun
    • 1
    • 2
    • 3
  • Guanxiong Zhang
    • 1
    • 2
    • 3
  • Kehong Wang
    • 1
    • 2
    • 3
  • Lilei Zhou
    • 1
    • 2
  • Fang Wang
    • 1
    • 2
    • 3
  • Jinfang Sun
    • 1
    • 2
    • 3
  1. 1.Faculty of Architecture and Urban PlanningChongqing UniversityChongqingChina
  2. 2.Key Lab of Three Gorges Reservoir Region Eco-Environment, Ministry of EducationChongqing UniversityChongqingChina
  3. 3.State Key Laboratory of Coal Mine Disaster Dynamics and ControlChongqing UniversityChongqingChina
  4. 4.College of Architecture and Urban PlanningChongqing Jiaotong UniversityChongqingChina

Personalised recommendations