Advertisement

Concentration and chemical distribution of metals and arsenic under different typical Mediterranean cropping systems

  • María GabarrónEmail author
  • Angel Faz
  • Silvia Martínez-Martínez
  • Jose A. Acosta
Original Paper

Abstract

Soil under an intensive agriculture production could result in metal pollution if bad management practices are carried out. The aims of this study were to evaluate the influence of cropping systems on soil metal(loid)s accumulation and speciation and to identify metal sources for each cropping system. To achieve these objectives, 40 soil samples from cereal, fruit, citrus and horticultural cropping areas and 15 samples from non-disturbed areas were collected. pH, salinity, particle size distribution, organic carbon and carbonate contents were analysed. In addition, total, DTPA-extractable and water-soluble Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and As concentrations and their chemical speciation were determined. Results showed an enrichment of Pb in cereal and horticultural soils, of Zn in fruit and horticultural soils and of Cu and Cd in citrus soils. The most available metals were Pb and Cd which was due to their ability to bind to carbonate and reducible phases of soils. The PCA suggested an anthropogenic origin of Pb, Cd, Cu and Zn in most of the cropping systems; this origin was related to both agriculture management practices and other anthropic actions, such as traffic. Therefore, changes in crop managements are necessary for a sustainable agriculture in the studied crop systems.

Keywords

Chemical speciation Metals Multivariate analysis Crop Soil 

Notes

Acknowledgements

The financial support to conduct this study was provided by the Fundación Séneca of Comunidad Autónoma de Murcia-Spain (15380/PI/10).

References

  1. Acosta, J. A., Faz, A., & Martinez-Martinez, S. (2010). Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environmental Monitoring Assessment, 169, 519–530.CrossRefGoogle Scholar
  2. Acosta, J. A., Faz, A., Martínez-Martínez, S., & Arocena, J. M. (2011a). Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia city, southeast Spain). Applied Geochemistry, 26, 405–414.CrossRefGoogle Scholar
  3. Acosta, J. A., Faz, A., Martínez-Martínez, S., Zornoza, R., Carmona, D. M., & Kabas, S. (2011b). Multivariate statistical and GIS-based approach to evaluate heavy metals behaviour in mine sites for future reclamation. Journal of Geochemical Exploration, 109, 8–17.CrossRefGoogle Scholar
  4. Acosta, J. A., Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R., & Arocena, J. M. (2015). Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas. Chemosphere, 134, 328–337.CrossRefGoogle Scholar
  5. Adriano, D. C. (2001). Trace elements in terrestrial environments, biogeochemistry, bioavailability and risk of metals (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  6. Alias, L. J., & Ortiz, R. (1975). Características fisiográficas y ambientales de interés edafogenético del campo de Cartagena (Murcia). Anal. Inst. Bot. Cavanilles, 32(2), 1021–1037.Google Scholar
  7. Andrades, M. (1996). Prácticas de Edafología y Climatología. In Universidad de la Rioja (Ed.). Logroño, La Rioja, España (pp. 14–16).Google Scholar
  8. Botsou, F., Sungur, A., Kelepertzis, E., & Soylak, M. (2016). Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicology and Environmental Safety, 132, 101–110.CrossRefGoogle Scholar
  9. Buurman, P., van Lagen, B., & Veltorst, E. J. (1996). Manual for soil and water analysis. Leiden: Backhuys Publishers, Technical Report.Google Scholar
  10. Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., et al. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.CrossRefGoogle Scholar
  11. Cavani, L., Manici, L. M., Caputo, F., Peruzzi, E., & Ciavatta, C. (2016). Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. Journal of Environmental Management, 182, 37–47.CrossRefGoogle Scholar
  12. Chen, T., Liu, X., Li, X., Zhao, K., Zhang, J., Xu, J., et al. (2009). Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environment Pollution, 157, 1003–1010.CrossRefGoogle Scholar
  13. Deng, W., Li, X., An, Z., Yang, L., Hou, K., & Zhang, Y. (2016). Identification of sources of metal in the agricultural soils of the Guanzhong plain, northwest China. Environmental Toxicology and Chemistry, 9999(9999), 1–7.Google Scholar
  14. Ding, Q., Cheng, G., Wang, Y., & Zhuang, D. (2017). Effects of undisturbed factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment, 578, 577–585.CrossRefGoogle Scholar
  15. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metals sources in soils. Environmental Pollution, 114, 313–324.CrossRefGoogle Scholar
  16. FIMRT. (2010). Certificate reference material catalogue. Germany: Federal Institute for Material Research and Testing.Google Scholar
  17. Frau, F. (2000). The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: Environmental implications. Mineralogical Magazine, 64(6), 995–1006.CrossRefGoogle Scholar
  18. Gasparatos, D., Mavromati, G., Kotsovilis, P., & Massas, I. (2015). Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: A residential, agricultural, and industrial area in Greece. Environmental Earth and Sciences, 74, 1099–1108.CrossRefGoogle Scholar
  19. Guo, T., De Laune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3), 305–316.CrossRefGoogle Scholar
  20. Hjortenkrans, D. S. T., Bergback, B. G., & Haggerud, A. V. (2008). Transversal immission patterns and leachability of heavy metals in road side soils. Journal of Environmental Monitoring, 10, 739–746.CrossRefGoogle Scholar
  21. Hooda, P. S. (2010). Trace elements in soils. Hoboken: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  22. Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., et al. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67, 2148–2155.CrossRefGoogle Scholar
  23. IGME. (2016). http://info.igme.es/visorweb/. Accesed December 2016.
  24. IGME. (2018a). Memoria Hoja Geológica Caravaca de la Cruz. http://info.igme.es/cartografiadigital/geologica/mgd50Hoja.aspx?Id=910&language=es.
  25. Kabata-pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: CRC Press.Google Scholar
  26. Kelepertzis, E. (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221–222, 82–90.CrossRefGoogle Scholar
  27. Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., et al. (2013). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449–458.CrossRefGoogle Scholar
  28. Kosolsaksakul, P., Farmer, J. G., Oliver, I. W., & Graham, M. C. (2014). Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environmental Pollution, 187, 153–161.CrossRefGoogle Scholar
  29. Kwon, S.-I., Jang, Y.-A., Owens, G., Kim, M.-K., Jung, G.-B., Hong, S.-C., et al. (2014). Long-term assessment of the environmental fate of heavy metals in agricultural soil after cessation of organic waste treatments. Environmental Geochemistry and Health, 36, 409–419.CrossRefGoogle Scholar
  30. Li, X. D., Coles, B. J., Ramsey, M. H., & Thornton, I. (1995). Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology, 124, 109–123.CrossRefGoogle Scholar
  31. Li, Y., Wang, Y.-B., Gou, X., Su, Y.-B., & Wang, G. (2006). Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. Journal of Environmental Sciences, 18(6), 1124–1134.CrossRefGoogle Scholar
  32. Lin, Y., Hana, P., Huang, Y., Yuan, G.-L., Guo, J.-X., & Li, J. (2017). Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. Journal of Geochemical Exploration, 173, 110–118.CrossRefGoogle Scholar
  33. Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Science Society of America Journal, 42, 421–428.CrossRefGoogle Scholar
  34. Liu, Y., Wang, H., Li, X., & Li, J. (2015). Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere, 25(6), 901–909.CrossRefGoogle Scholar
  35. Lu, A., Wang, J., Qin, X., Wang, K., Han, P., & Zhang, S. (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 425, 66–74.CrossRefGoogle Scholar
  36. Lukat, E., & Sarteel, M. (2013). Resource efficiency in practiceClosing mineral cycles (Eficiencia de los recursos en la práctica. El cierre de los ciclos de minerales). Elizabeth Dooley Ed., European commission project No. 070372/2013/665122/ETU/B.1. http://ec.europa.eu/environment/water/water-itrates/pdf/leaflets/Leaflet_Murcia_ES.pdf.
  37. Luo, X.-S., Yu, S., & Li, X.-D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution, 159, 1317–1326.CrossRefGoogle Scholar
  38. Martínez-Sánchez, M. J., & Pérez-Sirvent, C. (2007). Niveles de fondo y niveles genéricos de referencia de metales pesados en suelos de la Región de Murcia. Secretaría autonómica para la sostenibilidad. Dirección General de calidad ambiental Ed. Spain.Google Scholar
  39. Micó, C., Peris, M., Sánchez, J., & Recatalá, L. (2006a). Heavy metal content of agricultural soils in a Mediterranean semiarid area: The Segura River Valley (Alicante, Spain). Spanish Journal of Agricultural Research, 4(4), 363–372.CrossRefGoogle Scholar
  40. Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006b). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.CrossRefGoogle Scholar
  41. Nicholson, F. A., Smithb, S. R., Allowayc, B. J., Carlton-Smithd, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. The Science of the Total Environment, 311, 205–219.CrossRefGoogle Scholar
  42. Patil, H., Tank, R. V., Bennurmath, P., & Doni, S. (2018). Role of zinc, copper and boron in fruit crops: A review. International Journal of Chemical Studies, 6, 1040–1045.Google Scholar
  43. Peris, M., Micó, C., Recatalá, L., Sánchez, R., & Sánchez, J. (2007). Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region. Science of the Total Environment, 378, 42–48.CrossRefGoogle Scholar
  44. Peris, M., Recatalá, L., Micó, C., Sánchez, R., & Sánchez, J. (2008). Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean Region. Water, Air, and Soil pollution, 192, 25–37.CrossRefGoogle Scholar
  45. Risser, J. A., & Baker, D. E. (1990). Testing soils for toxic metals. In R. L. Westerman (Ed.), Soil testing and plant analysis (pp 275–298). Soil Science Society of America. Special Publication, 3rd Ed., Madison.Google Scholar
  46. Rodríguez, J. A., Nanos, N., Grau, J. M., Gil, L., & López-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096.CrossRefGoogle Scholar
  47. Rodríguez Martin, J. A., López-Arias, M., & Grau, J. M. (2006). Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution, 144, 1001–1012.CrossRefGoogle Scholar
  48. Rodríguez-Martín, J. A., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200–201, 180–188.CrossRefGoogle Scholar
  49. Santiago-Martín, A., Valverde-Asenjo, I., Quintana, J. R., Vázquez, A., Lafuente, A. L., & González-Huecas, C. (2014). Carbonate, organic and clay fractions determine metal bioavailability in periurban calcareous agricultural soils in the Mediterranean area. Geoderma, 221–222, 103–112.CrossRefGoogle Scholar
  50. Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage, M. (2017). Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-017-0005-8.Google Scholar
  51. Signes-Pastor, A. J., Carey, M., Carbonell-Barrachina, A. A., Moreno-Jiménez, E., Green, A. J., & Meharg, A. A. (2016). Geographical variation in inorganic arsenic in paddy field samples and commercial rice 500 from the Iberian Peninsula. Food Chemistry, 202, 356–363.CrossRefGoogle Scholar
  52. Sofianska, E., & Michailidis, K. (2015). Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece. Environmental Monitoring Assessment, 187, 101.CrossRefGoogle Scholar
  53. Soil Survey Staff. (2004). Soil survey laboratory methods manual. Version No. 4.0.USDA NRCS. Soil Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, DC.Google Scholar
  54. Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92, 517–523.CrossRefGoogle Scholar
  55. Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis ofroad-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 110, 483–495.CrossRefGoogle Scholar
  56. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  57. Tóth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.CrossRefGoogle Scholar
  58. Tsipouridis, C. G., Simonis, A. D., Bladenopoulos, S., Isaakidis, A. M., & Stylianidi, D. C. (2002). Nutrient element variability of peach trees and tree mortality in relation to cultivars and rootstocks. Horticultural Science (Prague), 29(2), 51–55.Google Scholar
  59. USDA. (1987). Textural soil classification. Soil Conservation Service: Study guide. National employee development staff.Google Scholar
  60. Zhang, J., Wang, Y., Liu, J., Liu, Q., & Zhou, Q. (2016). Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. Journal of Soils and Sediments, 16, 634–644.CrossRefGoogle Scholar
  61. Zong, Y. T., Xiao, Q., & Lu, S. G. (2016). Chemical fraction, leachability, and bioaccessibility of heavy metals in contaminated soils, Northeast China. Environmental Science and Pollution Research, 23, 24107–24114.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • María Gabarrón
    • 1
    Email author
  • Angel Faz
    • 1
  • Silvia Martínez-Martínez
    • 1
  • Jose A. Acosta
    • 1
  1. 1.Sustainable Use, Management and Reclamation of Soil and Water Research GroupUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations