Advertisement

Occurrence and risk evaluation of organochlorine contaminants in surface water along the course of Swartkops and Sundays River Estuaries, Eastern Cape Province, South Africa

  • Chijioke OlisahEmail author
  • Abiodun O. Adeniji
  • Omobola O. Okoh
  • Anthony I. Okoh
Original Paper

Abstract

Organochlorine contaminants were analysed in surface water from Sundays (SDE) and Swartkops Estuaries (SWE), Eastern Cape Province, which is among the largest estuaries in South Africa. The concentration of Σ18OCPs ranged from 16.7 to 249.2 ng/L in autumn, 19.9–81.4 ng/L in winter, 43.6–126.8 ng/L in spring and 68.3–199.9 ng/L in summer for SDE, whereas in SWE, the values varied from 20.9 to 259.7 ng/L in autumn, 58.9–263.9 ng/L in winter, 3.2–183.6 ng/L in spring and 118.0–188.9 ng/L in summer. Among all OCPs, α-HCH, β-HCH, p,p′-DDE, p,p′-DDT, endrin, dieldrin and endrin aldehyde were predominant in surface water samples from SDE and SWE. Furthermore, the mean concentration of polychlorinated biphenyls (PCBs) ranged from 126.7 ng/L in winter to 151.0 ng/L in spring for SDE and 249.0 ng/L in spring to 727.6 ng/L in winter for SWE. Tri- and tetra-PCBs dominated the PCB homologue profile. Hierarchical cluster analysis grouped the study sites into three regions from least polluted to most polluted, indicated that SWE is more polluted compared to SDE, probably due to the influx of agricultural and industrial effluents. Carcinogenic and non-carcinogenic risk assessment revealed that the water from both estuaries is not safe for drinking, although suitable for bathing.

Keywords

Organochlorine contaminants Aquatic system Estuaries Industrial and agricultural environment Health risk assessment 

Notes

Supplementary material

10653_2019_336_MOESM1_ESM.docx (119 kb)
Supplementary material 1 (DOCX 118 kb)

References

  1. Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2017). Petroleum hydrocarbon profiles of water and sediment of Algoa Bay, Eastern Cape, South Africa. International Journal of Environmental Research and Public Health.  https://doi.org/10.3390/ijerph14101263.CrossRefGoogle Scholar
  2. Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2018). Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-018-0213-x.CrossRefGoogle Scholar
  3. Afful, S., & Anim, A. K. (2010). Spectrum of organochlorine pesticide residues in fish samples from the Densu Basin. Research Journal of Environmental and Earth Sciences, 2(3), 133–138.Google Scholar
  4. Ahmed, M. M., Doumenq, P., Awaleh, M. O., Syakti, A. D., Asia, L., & Chiron, S. (2017). Levels and sources of heavy metals and PAHs in sediment of Djibouti-city (Republic of Djibouti). Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2017.05.055.CrossRefGoogle Scholar
  5. Al Dahaan, S., Al-Ansari, N., & Knutsson, S. (2016). Influence of groundwater hypothetical salts on electrical conductivity total dissolved solids. Engineering.  https://doi.org/10.4236/eng.2016.811074.CrossRefGoogle Scholar
  6. Almond, J. E. (2012). Expansion of river bend citrus farm near Addo Sundays River Valley Municipality, Eastern Cape. Natura Viva, 1–12.Google Scholar
  7. Al-Rawabdeh, A. M., Martonos, I. M., Baciu, C., Touil, S., Driss, M. R., Tedetti, M., et al. (2019). Occurrence, distribution and ecological risk of trace metals and organic pollutants in surface sediments from a Southeastern European river (Someşu Mic River, Romania). Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2018.12.428.CrossRefGoogle Scholar
  8. Amdany, R., Chimuka, L., Cukrowska, E., Kukučka, P., Kohoutek, J., Tölgyessy, P., et al. (2014). Assessment of bioavailable fraction of POPS in surface water bodies in Johannesburg City, South Africa, using passive samplers: An initial assessment. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-014-3809-3.CrossRefGoogle Scholar
  9. Baird, D. (2001). Sundays River Estuary, Algoa Bay, Eastern Cape. In: Dupra, V., Smith, S. V., Marshall C, J. I, & Crossland, C. J. (Eds.), Estuarine systems of Sub-Saharan Africa: Carbon, nitrogen and phosphorous fluxes. LOICZ Reports & Studies No. 18. LOICZ, Texel.Google Scholar
  10. Barco-Bonilla, N., Nieto-Garcia, A. J., Romero-Gonzalez, R., Martinez, V. J. L., & Frenich, A. G. (2015). Simultaneous and highly sensitive determination of PCBs and PBDEs in environmental water and sediments by gas chromatography coupled to high resolution magnetic sector mass spectrometry. Analytical Methods.  https://doi.org/10.1039/c5ay00017c.CrossRefGoogle Scholar
  11. Barhoumi, B., Beldean-Galea, M. S., Al-Rawabdeh, A. M., Roba, C., Martonos, I. M., Bălc, R., et al. (2019). Occurrence, distribution and ecological risk of trace metals and organic pollutants in surface sediments from a Southeastern European river (Someşu Mic River, Romania). Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2018.12.428.CrossRefGoogle Scholar
  12. Barletta, M., Lima, A. R. A., & Costa, M. F. (2019). Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2018.09.276.CrossRefGoogle Scholar
  13. Barnhoorn, I. E. J., van Dyk, J. C., Genthe, B., Harding, W. R., Wagenaar, G. M., & Bornman, M. S. (2015). Organochlorine pesticide levels in Clarias gariepinus from polluted freshwater impoundments in South Africa and associated human health risks. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2014.08.030.CrossRefGoogle Scholar
  14. Batterman, S. A., Chernyak, S. M., Gounden, Y., Matooane, M., & Naidoo, R. N. (2008). Organochlorine pesticides in ambient air in Durban, South Africa. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2008.02.033.CrossRefGoogle Scholar
  15. Binning, K., & Baird, D. (2001). Survey of heavy metals in the sediments of the Swartkops River Estuary, Port Elizabeth South Africa. Water SA, 27(4), 461–466.CrossRefGoogle Scholar
  16. Borgå, K., Fjeld, E., Kierkegaard, A., & McLachlan, M. S. (2012). Food web accumulation of cyclic siloxanes in Lake Mjøsa, Norway. Environmental Science and Technology.  https://doi.org/10.1021/es300875d.CrossRefGoogle Scholar
  17. Bornman, M. S., Delport, R., Becker, P., Risenga, S., & De Jager, C. (2005). Urogenital birth defects in neonates from a high-risk malaria area in Limpopo Province, South Africa. Epidemiology, 16(5), 126–127.CrossRefGoogle Scholar
  18. Bouwman, H., Sereda, B., & Meinhardt, H. M. (2006). Simultaneous presence of DDT and pyrethroid residues in human breast milk from a malaria endemic area in South Africa. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2006.02.002.CrossRefGoogle Scholar
  19. Chakraborty, P., Khuman, S. N., Selvaraj, S., Sampath, S., Devi, N. L., Bang, J. J., et al. (2016). Polychlorinated biphenyls and organochlorine pesticides in River Brahmaputra from the outer Himalayan Range and River Hooghly emptying into the Bay of Bengal: Occurrence, sources and ecotoxicological risk assessment. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2016.06.067.CrossRefGoogle Scholar
  20. Chen, W., Jing, M., Bu, J., Ellis Burnet, J., Qi, S., Song, Q., et al. (2011). Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: A study of an arid zone in Central Asia. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-010-1613-2.CrossRefGoogle Scholar
  21. Cheng, J. P., Wu, Q., Xie, H. Y., Gu, J. M., Zhao, W. C., Ma, J., et al. (2007). Polychlorinated biphenyls (PCBs) in PM 10 surrounding a chemical industrial zone in Shanghai, China. Bulletin of Environmental Contamination and Toxicology.  https://doi.org/10.1007/s00128-007-9267-7.CrossRefGoogle Scholar
  22. Chevreuil, M., & Granier, L. (1991). Seasonal cycle of polychlorinated biphenyls in the waters of the catchment basin of the river seine (France). Water, Air, and Soil pollution.  https://doi.org/10.1007/BF00211831.CrossRefGoogle Scholar
  23. CLABBS Consortium. (1999). Algoa bay management plan (pp. 1–63). Kenilworth: African Environmental Solutions.Google Scholar
  24. Cowley, P. D., Childs, A. R., & Bennett, H. R. (2013). The trouble with estuarine fisheries in temperate South Africa, illustrated by a case study on the Sundays Estuary. African Journal of Marine Science.  https://doi.org/10.2989/1814232X.2013.789079.CrossRefGoogle Scholar
  25. CSIR (Council for Scientific and Industrial Research). (2007). Proposed extension to the container berth and construction of an administration craft basin at the Port of Ngqura. Chapter 6: Marine ecology, sediment toxicology and dredging. Draft Scoping Report (pp. 08–18).Google Scholar
  26. Davies, R. A. G., & Randall, R. M. (1989). Historical and geographical patterns in eggshell thickness of African Fish Eagles Haliaeetus vocifer, in relation to pesticide use within Southern Africa. Raptors in the Modern World, WWGBP, 501–513.Google Scholar
  27. De Jager, C., Aneck-Hahn, N. H., Schulenburg, G., Farias, P., & Bornman, M. S. (2006). Reduced seminal parameters associated with environmental DDT exposure in men from Limpopo Province, South Africa. In 9th World Congress on Environmental Health, Dublin, UK, 18–23 June 2006.Google Scholar
  28. de Lucia, G. A., Caliani, I., Marra, S., Camedda, A., Coppa, S., Alcaro, L., et al. (2014). Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Marine Environmental Research.  https://doi.org/10.1016/j.marenvres.2014.03.017.CrossRefGoogle Scholar
  29. Dirbaba, N. B., Li, S., Wu, H., Yan, X., & Wang, J. (2018). Organochlorine pesticides, polybrominated diphenyl ethers and polychlorinated biphenyls in surficial sediments of the Awash River Basin Ethiopia. PLoS ONE.  https://doi.org/10.1371/journal.pone.0205026.CrossRefGoogle Scholar
  30. Doong, R. A., Peng, C. K., Sun, Y. C., & Liao, P. L. (2002). Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Marine Pollution Bulletin.  https://doi.org/10.1016/S0025-326X(02)00102-9.CrossRefGoogle Scholar
  31. Duan, X., Li, Y., Li, X., Li, M., & Zhang, D. (2013). Distributions and sources of polychlorinated biphenyls in the coastal East China Sea sediments. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2013.06.102.CrossRefGoogle Scholar
  32. El Bouraie, M., El Barbary, A., & Yehia, M. (2011). Monitoring of chlorinated hydrocarbon compounds residues in surface water and bed sediment samples from El-Rahawy drain, Egypt. International Journal of Environmental Sciences, 1(7), 1931–1943.Google Scholar
  33. Environ-Fish Africa. (2009). C.A.P.E. estuaries management programme Swartkops integrated environmental management plan (pp. 1–110). Nelson Mandela Bay Municipality, Port Elizabeth.Google Scholar
  34. Eqani, S. A. M. A. S., Malik, R. N., Cincinelli, A., Zhang, G., Mohammad, A., Qadir, A., et al. (2013a). Uptake of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: The case of River Chenab. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2013.01.052.CrossRefGoogle Scholar
  35. Eqani, S. A. M. A. S., Malik, R. N., Alamdar, A., & Faheem, H. (2012a). Status of organochlorine contaminants in the different environmental compartments of Pakistan: A review on occurrence and levels. Bulletin of Environmental Contamination and Toxicology.  https://doi.org/10.1007/s00128-011-0496-4.CrossRefGoogle Scholar
  36. Eqani, S. A. M. A. S., Malik, R. N., Katsoyiannis, A., Zhang, G., Chakraborty, P., Mohammad, A., et al. (2012b). Distribution and risk assessment of organochlorine contaminants in surface water from River Chenab, Pakistan. Journal of Environmental Monitoring.  https://doi.org/10.1039/c2em11012a.CrossRefGoogle Scholar
  37. Eqani, S. A. M. A. S., Malik, R. N., & Mohammad, A. (2011). The level and distribution of selected organochlorine pesticides in sediments from River Chenab, Pakistan. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-010-9312-z.CrossRefGoogle Scholar
  38. Eqani, S. A., Naseem, R., Cincinelli, A., Zhang, G., Mohammad, A., Qadir, A., et al. (2013b). Science of the total environment uptake of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) by river water fish: The case of River Chenab. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2013.01.052.CrossRefGoogle Scholar
  39. Farooq, S., Eqani, S. A. M. A. S., Malik, R. N., Katsoyiannis, A., Zhang, G., Zhang, Y., et al. (2011). Occurrence, finger printing and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Chenab River, Pakistan. Journal of Environmental Monitoring.  https://doi.org/10.1039/c1em10421g.CrossRefGoogle Scholar
  40. Fatoki, O. S., & Awofolu, O. R. (2003a). Persistent organochlorine pesticide residues in freshwater systems and sediments from the Eastern Cape, South Africa. Water SA, 29(3), 323–330.Google Scholar
  41. Fatoki, O. S., & Awofolu, R. O. (2003b). Methods for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electron-capture detection. Journal of Chromatography A.  https://doi.org/10.1016/S0021-9673(02)01730-2.CrossRefGoogle Scholar
  42. Fatoki, O. S., & Awofolu, O. R. (2004). Levels of organochlorine pesticide residues in marine-, surface-, ground- and drinking waters from the Eastern Cape Province of South Africa. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes.  https://doi.org/10.1081/PFC-120027442.CrossRefGoogle Scholar
  43. Fernández, M. A., Alonso, C., González, M. J., & Hernández, L. M. (1999). Occurrence of organochlorine insecticides, PCBs and PCB congeners in waters and sediments of the Ebro River (Spain). Chemosphere.  https://doi.org/10.1016/S0045-6535(98)00167-2.CrossRefGoogle Scholar
  44. Fujita, T., Ono, H., Dodbiba, G., & Yamaguchi, K. (2014). Evaluation of a recycling process for printed circuit board by physical separation and heat treatment. Waste Management.  https://doi.org/10.1016/j.wasman.2014.03.002.CrossRefGoogle Scholar
  45. Gao, S., Chen, J., Shen, Z., Liu, H., & Chen, Y. (2013). Seasonal and spatial distributions and possible sources of polychlorinated biphenyls in surface sediments of Yangtze Estuary, China. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2013.01.085.CrossRefGoogle Scholar
  46. Gao, Z., Xu, J., Xian, Q., Feng, J., Chen, X., & Yu, H. (2009). Polybrominated diphenyl ethers (PBDEs) in aquatic biota from the lower reach of the Yangtze River, East China. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2009.01.065.CrossRefGoogle Scholar
  47. Golfinopoulos, S. K., Nikolaou, A. D., Kostopoulou, M. N., Xilourgidis, N. K., Vagi, M. C., & Lekkas, D. T. (2003). Organochlorine pesticides in the surface waters of Northern Greece. Chemosphere.  https://doi.org/10.1016/S0045-6535(02)00480-0.CrossRefGoogle Scholar
  48. Guruge, K. S., & Tanabe, S. (2001). Contamination by persistent organochlorines and butyltin compounds in the West Coast of Sri Lanka. Marine Pollution Bulletin.  https://doi.org/10.1016/S0025-326X(00)00140-5.CrossRefGoogle Scholar
  49. Guzzella, L., Roscioli, C., Viganò, L., Saha, M., Sarkar, S. K., & Bhattacharya, A. (2005). Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, northeast India. Environment International.  https://doi.org/10.1016/j.envint.2004.10.014.CrossRefGoogle Scholar
  50. He, M. J., Luo, X. J., Chen, M. Y., Sun, Y. X., Chen, S. J., & Mai, B. X. (2012a). Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2011.12.035.CrossRefGoogle Scholar
  51. He, W., Qin, N., He, Q., Wang, Y., Kong, X., & Xu, F. (2012b). Characterization, ecological and health risks of DDTs and HCHs in water from a large shallow Chinese lake. Ecological Informatics.  https://doi.org/10.1016/j.ecoinf.2012.05.008.CrossRefGoogle Scholar
  52. Hiller, E., Zemanova, L., Sirotiak, M., & Jurkovic, L. (2011). Concentrations, distributions, and sources of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in bed sediments of the water reservoirs in Slovakia. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-010-1431-6.CrossRefGoogle Scholar
  53. Hoh, E., & Hites, R. A. (2004). Sources of toxaphene and other organochlorine pesticides in North America as determined by air measurements and potential source contribution function analyses. Environmental Science and Technology.  https://doi.org/10.1021/es0499290.CrossRefGoogle Scholar
  54. Hong, S. H., Yim, U. H., Shim, W. J., Oh, J. R., & Lee, I. S. (2003). Horizontal and vertical distribution of PCBs and chlorinated pesticides in sediments from Masan Bay, Korea. Marine Pollution Bulletin.  https://doi.org/10.1016/S0025-326X(02)00399-5.CrossRefGoogle Scholar
  55. Hosking, S. G., Woodridge, T. H., Dimopoulos, M., Lin., C. H., Sale, M., & Du Preez. (2004). The valuation of changes to estuary services in South Africa as a result of changes to freshwater inflow. Department of Economics and Economic History and Department of Zoology/University of Port Elizabeth. Report to the Water Research Commission. WRC Report No: 1304/1/04. ISBN: 1-77005-278-x.Google Scholar
  56. Hough, M., Stewart, W. I., Uderstadt, K., & Wood, A. (2012). Design, construction, operation and effectiveness of a pilot artificial wetland system to remove stormwater and sewage pollutants entering the Swartkops River estuary via the Motherwell canal, Nelson Mandela Bay, South Africa. Johannesburg: SRK Consulting.Google Scholar
  57. Hu, G., Luo, X., Li, F., Dai, J., Guo, J., Chen, S., et al. (2010). Organochlorine compounds and polycyclic aromatic hydrocarbons in surface sediment from Baiyangdian Lake, North China: Concentrations, sources profiles and potential risk. Journal of Environmental Sciences.  https://doi.org/10.1016/S1001-0742(09)60090-5.CrossRefGoogle Scholar
  58. Ibrahim, R. S., Khairy, A., Zaatout, H. H., Hammoda, H. M., & Metwally, A. M. (2018). Digitally-optimized HPTLC coupled with image analysis for pursuing polyphenolic and antioxidant profile during alfalfa sprouting. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences.  https://doi.org/10.1016/j.jchromb.2018.09.021.CrossRefGoogle Scholar
  59. ICH. (2006). ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. In International conference on harmonization.Google Scholar
  60. IzE−Iyamu, O. K., Asia, I. O., & Egwakhide, P. A. (2007). Concentrations of residues from organochlorine pesticide in water and fish from some rivers in Edo State Nigeria. International Journal of Physical Sciences, 2(9), 237–241.Google Scholar
  61. Jiang, Q. T., Lee, T. K. M., Chen, K., Wong, H. L., Zheng, J. S., Giesy, J. P., et al. (2005). Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2004.09.028.CrossRefGoogle Scholar
  62. Kang, J. H., Park, H., Chang, Y. S., & Choi, J. W. (2008). Distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in human serum from urban areas in Korea. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2008.07.087.CrossRefGoogle Scholar
  63. Kargas, G., Chatzigiakoumis, I., Kollias, A., Spiliotis, D., & Kerkides, P. (2018). An Investigation of the relationship between the electrical conductivity of the soil saturated paste extract ECe with the respective values of the mass soil/water ratios 1: 1 and 1: 5 (EC1: 1 and EC1: 5). Multidisciplinary Digital Publishing Institute Proceedings.  https://doi.org/10.3390/proceedings2110661.CrossRefGoogle Scholar
  64. Katsoyiannis, A. (2006). Occurrence of polychlorinated biphenyls (PCBs) in the Soulou stream in the power generation area of Eordea, northwestern Greece. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2006.04.004.CrossRefGoogle Scholar
  65. Khan, M. U., Li, J., Zhang, G., & Malik, R. N. (2016). New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2016.06.030.CrossRefGoogle Scholar
  66. Kim, S. K., Oh, J. R., Shim, W. J., Lee, D. H., Yim, U. H., Hong, S. H., et al. (2002). Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea. Marine Pollution Bulletin.  https://doi.org/10.1016/S0025-326X(01)00279-X.CrossRefGoogle Scholar
  67. Kotsedi, D., Adams, J. B., & Snow, G. C. (2012). The response of microalgal biomass and community composition to environmental factors in the Sundays Estuary. Water SA.  https://doi.org/10.4314/wsa.v38i2.3.CrossRefGoogle Scholar
  68. Lee, S., Kannan, K., & Moon, H. B. (2013). Assessment of exposure to polybrominated diphenyl ethers (PBDEs) via seafood consumption and dust ingestion in Korea. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2012.10.099.CrossRefGoogle Scholar
  69. Li, J., Li, F., & Liu, Q. (2015). Sources, concentrations and risk factors of organochlorine pesticides in soil, water and sediment in the Yellow River estuary. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2015.09.003.CrossRefGoogle Scholar
  70. Li, W. H., Tian, Y. Z., Shi, G. L., Guo, C. S., Feng, Y. C., & Yue, X. P. (2012). Source and risk assessment of PCBs in sediments of Fenhe reservoir and watershed, China. Journal of Environmental Monitoring.  https://doi.org/10.1039/C2EM10983B.CrossRefGoogle Scholar
  71. Liu, H., Hu, Y., Qi, S., Xing, X., Zhang, Y., Yang, D., et al. (2015). Organochlorine pesticide residues in surface water from Sichuan Basin to Aba Prefecture profile, east of the Tibetan Plateau. Frontiers of Earth Science.  https://doi.org/10.1007/s11707-014-0451-x.CrossRefGoogle Scholar
  72. Lv, J., Zhang, Y., Zhao, X., & Zhou, C. (2015). Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sediments of Liaohe River: levels, spatial and temporal distribution, possible sources, and inventory. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-014-3666-1.CrossRefGoogle Scholar
  73. Mahmood, A., Malik, R. N., Li, J., & Zhang, G. (2014). Levels, distribution pattern and ecological risk assessment of organochlorines pesticides (OCPs) in water and sediments from two tributaries of the Chenab River, Pakistan. Ecotoxicology.  https://doi.org/10.1007/s10646-014-1332-5.CrossRefGoogle Scholar
  74. Miglioranza, K. S. B., Gonzalez, M., Ondarza, P. M., Shimabukuro, V. M., Isla, F. I., Fillmann, G., et al. (2013). Assessment of Argentinean Patagonia pollution: PBDEs, OCPs and PCBs in different matrices from the Río Negro basin. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2013.02.055.CrossRefGoogle Scholar
  75. Montuori, P., Cirillo, T., Fasano, E., Nardone, A., Esposito, F., & Triassi, M. (2014). Spatial distribution and partitioning of polychlorinated biphenyl and organochlorine pesticide in water and sediment from Sarno River and Estuary, Southern Italy. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-013-2419-x.CrossRefGoogle Scholar
  76. Moodley, B., Birungi, G., & Ndungu, P. (2016). Detection and quantification of emerging organic pollutants in the Umgeni and Msunduzi Rivers. Water Research Commission Report. WRC Report No. 2215/1/16 (pp. 1–173).Google Scholar
  77. Nel, L., Strydom, N. A., & Bouwman, H. (2015). Preliminary assessment of contaminants in the sediment and organisms of the Swartkops Estuary, South Africa. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2015.11.015.CrossRefGoogle Scholar
  78. Nikolova, N., Lavrova-Popova, S., Petkova, P., Tsakovski, S., & Pribylova, P. (2018). Passive air sampling monitoring of POPs in southeastern europe at high mountain station BEO—Moussala, Bulgaria. Journal of Chemical Technology and Metallurgy, 53(2), 267–274.Google Scholar
  79. Noegrohati, S., Hadi, S., & Sanjayadi, S. (2008). Fate and behavior of organochlorine pesticides in the Indonesian tropical climate: A study in the Segara Anakan estuarine ecosystem. CLEAN – Soil, Air, Water.  https://doi.org/10.1002/clen.200800083.CrossRefGoogle Scholar
  80. Nouira, T., Risso, C., Chouba, L., Budzinski, H., & Boussetta, H. (2013). Polychlorinated biphenyls (PCBs) and Polybrominated Diphenyl Ethers (PBDEs) in surface sediments from Monastir Bay (Tunisia, Central Mediterranean): Occurrence, distribution and seasonal variations. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2013.06.017.CrossRefGoogle Scholar
  81. Odabasi, M., & Cetin, B. (2012). Determination of octanol–air partition coefficients of organochlorine pesticides (OCPs) as a function of temperature: Application to air–soil exchange. Journal of Environmental Management.  https://doi.org/10.1016/j.jenvman.2012.10.010.CrossRefGoogle Scholar
  82. Offenberg, J. H., & Baker, J. E. (2002). Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect. Environmental Science and Technology.  https://doi.org/10.1021/es025608h.CrossRefGoogle Scholar
  83. Ogbeide, O., Tongo, I., & Ezemonye, L. (2015). Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-015-4840-8.CrossRefGoogle Scholar
  84. Osibanjo, O., Bouwman. H., Bashir, N. H. H., Okond’Ahoka, J., Choong Kwet Yve, R., & Onyoyo, H. A. (2002). Regionally based assessment of persistent toxic substances. Sub-Saharan Africa regional report. In UNEP Chemicals, Geneva.Google Scholar
  85. Othman Said, T., & Fattah Hamed, M. A. (2006). Determination of persistent organic pollutants in water of new damietta harbour. Egypt, Egyptian Journal of Aquatic Research, 32(1), 235–245.Google Scholar
  86. Oturan, N., Van Hullebusch, E. D., Zhang, H., Mazeas, L., Budzinski, H., Le Menach, K., et al. (2015). Occurrence and Removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes. Environmental Science and Technology.  https://doi.org/10.1021/acs.est.5b02809.CrossRefGoogle Scholar
  87. Pan, H., Geng, J., Qin, Y., Tou, F., Zhou, J., Liu, M., et al. (2016). PCBs and OCPs in fish along coastal fisheries in China: Distribution and health risk assessment. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2016.06.064.CrossRefGoogle Scholar
  88. Pontolillo, J., & Eganhouse, R. (2001). The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds: DDT and DDE as a case study. In U.S Geological Survey.Google Scholar
  89. Qiu, Y. W., Zhang, G., Guo, L. L., Cheng, H. R., Wang, W. X., Li, X. D., et al. (2009). Current status and historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China. Estuarine, Coastal and Shelf Science.  https://doi.org/10.1016/j.ecss.2009.08.010.CrossRefGoogle Scholar
  90. Quinn, L., Pieters, R., Nieuwoudt, C., Borgen, A. R., Kylin, H., & Bouwman, H. (2009). Distribution profiles of selected organic pollutants in soils and sediments of industrial, residential and agricultural areas of South Africa. Journal of Environmental Monitoring.  https://doi.org/10.1039/b905585a.CrossRefGoogle Scholar
  91. Ryan, P. G., Bouwman, H., Moloney, C. L., Yuyama, M., & Takada, H. (2012). Long-term decreases in persistent organic pollutants in South African coastal waters detected from beached polyethylene pellets. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2012.09.013.CrossRefGoogle Scholar
  92. Shao, Y., Han, S., Ouyang, J., Yang, G., Liu, W., Ma, L., et al. (2016). Organochlorine pesticides and polychlorinated biphenyls in surface water around Beijing. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-016-7663-4.CrossRefGoogle Scholar
  93. Shi, Y., Gao, L., Li, W., Wang, Y., Liu, J., & Cai, Y. (2016a). Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing. China. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2015.11.008.CrossRefGoogle Scholar
  94. Shi, J., Li, P., Li, Y., Liu, W., Zheng, G. J., Xiang, L., et al. (2016b). Polychlorinated biphenyls and organochlorine pesticides in surface sediments from Shantou Bay, China: Sources, seasonal variations and inventories. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2016.09.006.CrossRefGoogle Scholar
  95. Sibiya, I. V., Olukunle, O. I., & Okonkwo, O. J. (2017). Seasonal variations and the influence of geomembrane liners on the levels of PBDEs in landfill leachates, sediment and groundwater in Gauteng Province, South Africa. Emerging Contaminants.  https://doi.org/10.1016/j.emcon.2017.05.002.CrossRefGoogle Scholar
  96. Singh, K. P., Malik, A., Mohan, D., & Takroo, R. (2005). Distribution of persistent organochlorine pesticide residues in Gomti River, India. Bulletin of Environmental Contamination and Toxicology.  https://doi.org/10.1007/s00128-004-0561-3.CrossRefGoogle Scholar
  97. Siyathemba, M. (2011). Willingness to pay for water quality changes in the Swartkops stuary. M.Sc. thesis, Nelson Mandela Metropolitican University (pp. 1–122).Google Scholar
  98. South African Weather Service. (2018). How are the dates of four seasons worked out? http://www.weathersa.co.za/learning/weather-questions/82-how-are-the-dates-of-the-four-seasons-worked-out. Accessed 2 June 2018.
  99. Strobl, R.O., Puillat, I., Marinov, D., Dueri, S., & Zaldívar, J.M. (2007). Polybrominated diphenyl ethers (PBDEs) fate and transport in an estuary using a three-dimensional hydrodynamic modelling approach. Technical Report. JRC European Commission.Google Scholar
  100. Sun, H., Qi, Y., Zhang, D., Li, Q. X., & Wang, J. (2016). Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2015.11.040.CrossRefGoogle Scholar
  101. Svendsen, T. C., Camus, L., Hargrave, B., Fisk, A., Muir, D. C. G., & Borgå, K. (2007). Polyaromatic hydrocarbons, chlorinated and brominated organic contaminants as tracers of feeding ecology in polar benthic amphipods. Marine Ecology Progress Series.  https://doi.org/10.3354/meps337155.CrossRefGoogle Scholar
  102. Tang, Z., Yang, Z., Shen, Z., Niu, J., & Cai, Y. (2008). Residues of organochlorine pesticides in water and suspended particulate matter from the Yangtze River catchment of Wuhan, China. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-007-9778-z.CrossRefGoogle Scholar
  103. Tartu, S., Angelier, F., Wingfield, J. C., Bustamante, P., Labadie, P., Budzinski, H., et al. (2015). Corticosterone, prolactin and egg neglect behavior in relation to mercury and legacy POPs in a long-lived Antarctic bird. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2014.10.008.CrossRefGoogle Scholar
  104. Thompson, L. A., Ikenaka, Y., Yohannes, Y. B., van Vuren, J. J., Wepener, V., Smit, N. J., et al. (2017). Concentrations and human health risk assessment of DDT and its metabolites in free−range and commercial chicken products from KwaZulu-Natal, South Africa. Food Additives and Contaminants Part A Chemistry, Analysis, Control, Exposure and Risk Assessment.  https://doi.org/10.1080/19440049.2017.1357209.CrossRefGoogle Scholar
  105. Turner, A., & Rawling, M. C. (2001). The influence of salting out on the sorption of neutral organic compounds in estuaries. Water Research.  https://doi.org/10.1016/S0043-1354(01)00163-4.CrossRefGoogle Scholar
  106. UNEP (United Nations Environment Programme). (2002). Sub-Saharan Africa, regionally based assessment of persistent toxic substances. United Nations Environment Programme, Chemicals (UNEP Chemicals)’, Geneva, Switzerland.Google Scholar
  107. Unyimadu, J. P., Osibanjo, O., & Babayemi, J. O. (2018). Selected persistent organic pollutants (POPs) in water of River Niger: occurrence and distribution. Environmental Monitoring and Assessment.  https://doi.org/10.1007/s10661-017-6378-4.CrossRefGoogle Scholar
  108. US EPA (United States Environment Protection Agency). (1989). Risk assessment guidance for superfund, volume 1, Human health evaluation manual, part A. EPA/540/1-89/002. Office of Emergency and Remedial Response, Washington, D.C.Google Scholar
  109. US EPA (United States Environmental Protection Agency). (1996). Indicators of the environmental impacts of transportation. Publication # EPA 230-R-96-009, Washington, D.C.Google Scholar
  110. US EPA (United States Environmental Protection Agency). (2006). Volunteer estuary monitoring: A methods manual. Publication EPA-842-B06-003.Google Scholar
  111. US EPA (United States Environmental Protection Agency). (2012). Water: Monitoring & assessment. EPA’s web archive document. https://archive.epa.gov/water/archive/web/html/vms59.html. Accessed 29 March 2019.
  112. US EPA (United States Environmental Protection Agency). (2016). Solid phase extraction of organochlorine pesticides and PCBs (pp. 3–5).Google Scholar
  113. Van Niekerk, L., Adams, J. B., Bate, G. C., Forbes, A. T., Forbes, N. T., Huizinga, P., et al. (2013). Country-wide assessment of estuary health: An approach for integrating pressures and ecosystem response in a data limited environment. Estuarine, Coastal and Shelf Science.  https://doi.org/10.1016/j.ecss.2013.05.006.CrossRefGoogle Scholar
  114. Van, A., Rochman, C. M., Flores, E. M., Hill, K. L., Vargas, E., Vargas, S. A., et al. (2012). Persistent organic pollutants in plastic marine debris found on beaches in San Diego, California. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2011.09.039.CrossRefGoogle Scholar
  115. Wang, G., Peng, J., Yang, D., Zhang, D., & Li, X. (2015). Current levels, composition profiles, source identification and potentially ecological risks of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the surface sediments from Bohai Sea. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2015.11.028.CrossRefGoogle Scholar
  116. Wasswa, J., Kiremire, B. T., Nkedi-Kizza, P., Mbabazi, J., & Ssebugere, P. (2011). Organochlorine pesticide residues in sediments from the Uganda side of Lake Victoria. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2010.09.010.CrossRefGoogle Scholar
  117. Wepener, V., van Dyk, C., Bervoets, L., O’Brien, G., Covaci, A., & Cloete, Y. (2011). An assessment of the influence of multiple stressors on the Vaal River, South Africa. Physics and Chemistry of the Earth.  https://doi.org/10.1016/j.pce.2011.07.075.CrossRefGoogle Scholar
  118. WHO (World Health Organization). (2004). Lindane in drinking -water: Background document fro development of WHO guidelines for drinking-water quality. https://www.who.int/water_sanitation_health/dwq/chemicals/lindane.pdf. Accessed 14 November 2018.
  119. Wolska, L., Mechlińska, A., Rogowska, J., & Namieśnik, J. (2012). Sources and fate of PAHs and PCBs in the marine environment. Critical Reviews in Environmental Science and Technology.  https://doi.org/10.1080/10643389.2011.556546.CrossRefGoogle Scholar
  120. Wright, D. A., & Welbourn, P. (2002). Environmental toxicology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  121. Wu, C., Luo, Y., Gui, T., & Huang, Y. (2014). Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. Science of the Total Environment.  https://doi.org/10.1016/j.scitotenv.2013.10.056.CrossRefGoogle Scholar
  122. Wu, Y., Wang, X., Li, Y., Ya, M., Luo, H., & Hong, H. (2017). Polybrominated diphenyl ethers, organochlorine pesticides, and polycyclic aromatic hydrocarbons in water from the Jiulong River Estuary, China: Levels, distributions, influencing factors, and risk assessment. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-015-4782-2.CrossRefGoogle Scholar
  123. Wurl, O., & Obbard, J. P. (2006). Distribution of organochlorine compounds in the sea-surface microlayer, water column and sediment of Singapore’s coastal environment. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2005.06.002.CrossRefGoogle Scholar
  124. Yahaya, A., Adeniji, O. A., Okoh, O. O., Songca, S. P., & Okoh, A. I. (2018). Distribution of polychlorinated biphenyl along the course of the Buffalo River, Eastern Cape Province, South Africa, and possible health risks. Water SA.  https://doi.org/10.4314/wsa.v44i4.09.CrossRefGoogle Scholar
  125. Yahaya, A., Okoh, O. O., Agunbiade, F. O., & Okoh, A. I. (2019). Occurrence of phenolic derivatives in Buffalo River of Eastern Cape South Africa: Exposure risk evaluation. Ecotoxicology and Environmental Safety.  https://doi.org/10.1016/j.ecoenv.2019.01.037.CrossRefGoogle Scholar
  126. Yahaya, A., Okoh, O. O., Okoh, A. I., & Adeniji, A. O. (2017). Occurrences of organochlorine pesticides along the course of the Buffalo river in the eastern cape of South Africa and its health implications. International Journal of Environmental Research and Public Health.  https://doi.org/10.3390/ijerph14111372.CrossRefGoogle Scholar
  127. Yan, S., Rodenburg, L. A., Dachs, J., & Eisenreich, S. J. (2008). Seasonal air–water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2007.06.074.CrossRefGoogle Scholar
  128. Yang, R. Q., Jiang, G. B., Zhou, Q. F., Yuan, C. G., & Shi, J. B. (2005). Occurrence and distribution of organochlorine pesticides (HCH and DDT) in sediments collected from East China Sea. Environment International.  https://doi.org/10.1016/j.envint.2005.05.027.CrossRefGoogle Scholar
  129. Yang, Y., Yun, X., Liu, M., Jiang, Y., Li, Q. X., & Wang, J. (2014). Concentrations, distributions, sources, and risk assessment of organochlorine pesticides in surface water of the East Lake, China. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-013-2269-6.CrossRefGoogle Scholar
  130. Zhang, Z. L., Hong, H. S., Zhou, J. L., Huang, J., & Yu, G. (2003). Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China. Chemosphere.  https://doi.org/10.1016/S0045-6535(03)00478-8.CrossRefGoogle Scholar
  131. Zhang, H., Lu, X., Zhang, Y., Ma, X., Wang, S., Ni, Y., et al. (2016). Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. Environmental Pollution.  https://doi.org/10.1016/j.envpol.2016.06.064.CrossRefGoogle Scholar
  132. Zhao, Z. H., Sun, J., Fang, X. K., Xia, L. L., & Hussain, J. (2016). Impacts of channel morphology on residues and ecological risks of polychlorinated biphenyls in water and sediment in Chahe River. Water Science and Engineering.  https://doi.org/10.1016/j.wse.2017.01.006.CrossRefGoogle Scholar
  133. Zhao, G., Xu, Y., Han, G., & Ling, B. (2006). Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-005-9003-3.CrossRefGoogle Scholar
  134. Zhao, X., Zhang, H., Ni, Y., Lu, X., Zhang, X., Su, F., et al. (2011). Polybrominated diphenyl ethers in sediments of the Daliao River Estuary, China: Levels, distribution and their influencing factors. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2010.12.032.CrossRefGoogle Scholar
  135. Zhou, S., Tong, L., Tang, Q., Gu, X., Xue, B., & Liu, W. (2013). Residues, sources and tissue distributions of organochlorine pesticides in dog sharks (Mustelus griseus) from Zhoushan Fishing Ground, China. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2013.05.035.CrossRefGoogle Scholar
  136. Zohair, A., Salim, A. B., Soyibo, A. A., & Beck, A. J. (2006). Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2005.09.012.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Pure and Applied ChemistryUniversity of Fort HareAliceSouth Africa
  2. 2.Applied and Environmental Microbiology Research Group (AEMREG)AliceSouth Africa
  3. 3.SAMRC, Microbial Water Quality Monitoring CentreUniversity of Fort HareAliceSouth Africa

Personalised recommendations