Advertisement

Environmental Geochemistry and Health

, Volume 41, Issue 6, pp 2505–2519 | Cite as

An integrated study of health, environmental and socioeconomic indicators in a mining-impacted community exposed to metal enrichment

  • Pablo M. Moya
  • Guillermo J. Arce
  • Cinthya Leiva
  • Alejandra S. Vega
  • Santiago Gutiérrez
  • Héctor Adaros
  • Luis Muñoz
  • Pablo A. Pastén
  • Sandra CortésEmail author
Original Paper

Abstract

The occurrence of toxic metals and metalloids associated with mine tailings is a serious public health concern for communities living in mining areas. This work explores the relationship between metal occurrence (e.g., spatial distribution in street dusts), human health indicators (e.g., metals in urine samples, lifestyle and self-reported diseases) and socioeconomic status (SES) using Chañaral city (in northern Chile) as study site, where a copper mine tailing was disposed in the periurban area. This study model may shed light on the development of environmental and health surveillance plans on arid cities where legacy mining is a sustainability challenge. High concentrations of metals were found in street dust, with arsenic and copper concentrations of 24 ± 13 and 607 ± 911 mg/kg, respectively. The arsenic concentration in street dust correlated with distance to the mine tailing (r = − 0.32, p-value = 0.009), suggesting that arsenic is dispersed from this source toward the city. Despite these high environmental concentrations, urinary levels of metals were low, while 90% of the population had concentrations of inorganic arsenic and its metabolites in urine below 33.2 µg/L, copper was detected in few urine samples (< 6%). Our results detected statistically significant differences in environmental exposures across SES, but, surprisingly, there was no significant correlation between urinary levels of metals and SES. Despite this, future assessment and control strategies in follow-up research or surveillance programs should consider environmental and urinary concentrations and SES as indicators of environmental exposure to metals in mining communities.

Keywords

Mine tailings Chile Metals Street dust Urine Human exposure 

Notes

Acknowledgements

This study was funded by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) through Projects CONICYT/FONDAP 15130011 and CONICYT/FONDAP 15110020. The authors acknowledge the Comisión Chilena de Energía Nuclear (CCHEN) for the measurement of metals in biological and environmental samples. The authors appreciate the help of Jheison López and Iván Pinto during the fieldwork phase and from the personnel of the Laboratorio de Calidad del Agua y Geoquímica Ambiental at Pontificia Universidad Católica de Chile (Fernanda Carrasco, Constanza Alfaro and Camila Espinoza). The authors also acknowledge support from Pastoral UC and the Vicerrectoría de Investigación through the XV Concurso de Investigación y Creación para Académicos. Finally, we thank several members of the community of Chañaral and its priest Jaime Pizarro who received us generously in their community during the development of the fieldwork phase of this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Pontificia Universidad Católica de Chile, having obtained approval from its Health Science Ethics Committee and the 1964 Declaration of Helsinki.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10653_2019_308_MOESM1_ESM.pdf (416 kb)
Supplementary material 1 (PDF 416 kb)
10653_2019_308_MOESM2_ESM.pdf (577 kb)
Supplementary material 2 (PDF 576 kb)
10653_2019_308_MOESM3_ESM.pdf (378 kb)
Supplementary material 3 (PDF 377 kb)
10653_2019_308_MOESM4_ESM.pdf (476 kb)
Supplementary material 4 (PDF 475 kb)
10653_2019_308_MOESM5_ESM.pdf (528 kb)
Supplementary material 5 (PDF 527 kb)
10653_2019_308_MOESM6_ESM.pdf (531 kb)
Supplementary material 6 (PDF 531 kb)
10653_2019_308_MOESM7_ESM.pdf (609 kb)
Supplementary material 7 (PDF 609 kb)
10653_2019_308_MOESM8_ESM.pdf (524 kb)
Supplementary material 8 (PDF 524 kb)
10653_2019_308_MOESM9_ESM.pdf (467 kb)
Supplementary material 9 (PDF 466 kb)
10653_2019_308_MOESM10_ESM.pdf (424 kb)
Supplementary material 10 (PDF 424 kb)

References

  1. Acosta, J. A., Faz, A., Kalbitz, K., Jansen, B., & Martínez-Martínez, S. (2014). Partitioning of heavy metals over different chemical fraction in street dust of Murcia (Spain) as a basis for risk assessment. Journal of Geochemical Exploration,144, 298–305.  https://doi.org/10.1016/j.gexplo.2014.02.004.CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry. (2018). Toxicological profiles. https://www.atsdr.cdc.gov/toxprofiles/index.asp. Accessed 5 June 2018.
  3. Aguirre, O. (2006). Exposición a arsénico en población urbana cercana a una fuente de contaminación de relaves en la ciudad de Chañaral, Tesis para optar al grado de Magíster en Salud Pública. Santiago: Universidad de Chile.Google Scholar
  4. Akinwunmi, F., Akinhanmi, T. F., Atobatele, Z. A., Adewole, O., Odekunle, K., Arogundade, L. A., et al. (2017). Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria. Environmental Toxicology and Pharmacology,49, 21–26.  https://doi.org/10.1016/j.etap.2016.11.006.CrossRefGoogle Scholar
  5. Al-Khashman, O. A. (2007a). Determination of metal accumulation in deposited street dusts in Amman, Jordan. Environmental Geochemistry and Health,29(1), 1–10.  https://doi.org/10.1007/s10653-006-9067-8.CrossRefGoogle Scholar
  6. Al-Khashman, O. A. (2007b). The investigation of metal concentrations in street dust samples in Aqaba city, Jordan. Environmental Geochemistry and Health,29(3), 197–207.  https://doi.org/10.1007/s10653-006-9065-x.CrossRefGoogle Scholar
  7. Apostoli, P. (2002). Elements in environmental and occupational medicine. Journal of Chromatography B,778(1–2), 63–97.  https://doi.org/10.1016/S0378-4347(01)00442-X.CrossRefGoogle Scholar
  8. Apostoli, P., Cortesi, I., Mangili, A., Elia, G., Drago, I., Gagliardi, T., et al. (2002). Assessment of reference values for mercury in urine: the results of an Italian polycentric study. Science of the Total Environment,289, 13–24.  https://doi.org/10.1016/S0048-9697(01)01013-0.CrossRefGoogle Scholar
  9. Aragón, M. C. V., & Alarcón Herrera, M. T. (2013). Risk analysis of a residential area close to the tailing dams of an ex-foundry. Environmental Progress & Sustainable Energy,32(4), 1150–1154.  https://doi.org/10.1002/ep.11701.CrossRefGoogle Scholar
  10. Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution,123(1), 95–105.  https://doi.org/10.1016/S0269-7491(02)00337-8.CrossRefGoogle Scholar
  11. Barbosa, F., Jr., Tanus-Santos, J. E., Gerlach, R. F., & Parsons, P. J. (2005). A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspectives,113(12), 1669–1674.  https://doi.org/10.1289/ehp.7917.CrossRefGoogle Scholar
  12. Benhaddya, M. L., Boukhelkhal, A., Halis, Y., & Hadjel, M. (2016). Human health risks associated with metals from urban soil and road dust in an oilfield area of Southeastern Algeria. Archives of Environmental Contamination and Toxicology,70(3), 556–571.  https://doi.org/10.1007/s00244-015-0244-6.CrossRefGoogle Scholar
  13. Cáceres, D. (2012). Contaminación por relaves en la zona costera de Chañaral: efectos en la salud ambiental infantil: un estudio de caso. Congreso Latinoamericano de prevención de riesgos y medio ambiente.Google Scholar
  14. Cáceres, D. (2015). Evaluación de los efectos agudos en la función pulmonar por exposición a material particulado fino (MP2.5) en niños que viven próximos a una playa masivamente contaminada por relaves mineros, Chañaral, Tesis para optar al grado de Doctor en Salud Pública. Santiago: Universidad de Chile.Google Scholar
  15. Cáceres, D., Pino, P., Montesinos, N., Atalah, E., Amigo, H., & Loomis, D. (2005). Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environmental Research,98(2), 151–159.  https://doi.org/10.1016/j.envres.2005.02.007.CrossRefGoogle Scholar
  16. Calcagni, M. S. (2016). Screening geoquímico urbano: ocurrencia, distribución y biodisponibilidad de metales y metaloides en matrices sólidas en Copiapó. Santiago: Pontificia Universidad Católica de Chile.Google Scholar
  17. Callan, A. C., Winters, M., Barton, C., Boyce, M., & Hinwood, A. L. (2012). Children’s exposure to metals: A community-initiated study. Archives of Environmental Contamination and Toxicology,62(4), 714–722.  https://doi.org/10.1007/s00244-011-9727-2.CrossRefGoogle Scholar
  18. Canadian Council of Ministers of the Environment. (2018). Canadian soil quality guidelines for the protection of environmental and human health. http://ceqg-rcqe.ccme.ca/en/index.html. Accessed 28 Aug 2018.
  19. Cao, Z., Chen, Q., Wang, X., Zhang, Y., Wang, S., Wang, M., et al. (2018). Contamination characteristics of trace metals in dust from different levels of roads of a heavily air-polluted city in north China. Environmental Geochemistry and Health,40(6), 2441–2452.  https://doi.org/10.1007/s10653-018-0110-3.CrossRefGoogle Scholar
  20. Carkovic, A. B., Calcagni, M. S., Vega, A. S., Coquery, M., Moya, P. M., Bonilla, C. A., et al. (2016). Active and legacy mining in an arid urban environment: Challenges and perspectives for Copiapó, Northern Chile. Environmental Geochemistry and Health,38(4), 1001–1014.  https://doi.org/10.1007/s10653-016-9793-5.CrossRefGoogle Scholar
  21. Castilla, J. (1983). Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Marine Pollution Bulletin,14(12), 459–464.  https://doi.org/10.1016/0025-326X(83)90046-2.CrossRefGoogle Scholar
  22. Cedrón, A. (2006). Niveles de plomo en niños expuestos a relaves mineros en Chañaral, Tesis para optar al grado de Magíster en Salud Pública. Santiago: Universidad de Chile.Google Scholar
  23. Centers for Disease Control and Prevention. (2009). Fourth report on human exposure to environmental chemicals. Atlanta, GA. https://www.cdc.gov/exposurereport/. Accessed 28 Aug 2018.
  24. Centers for Disease Control and Prevention. (2018). Fourth report on human exposure to environmental chemicals, updated tables. Atlanta, GA. https://www.cdc.gov/exposurereport/.
  25. Cocker, J. (2014). A perspective on biological monitoring guidance values. Toxicology Letters,231(2), 122–125.  https://doi.org/10.1016/j.toxlet.2014.09.010.CrossRefGoogle Scholar
  26. Cortés, S. (2009). Percepción y medición del riesgo a metales en una población expuesta a residuos mineros, Tesis para optar al grado de Doctor en Salud Pública. Santiago: Universidad de Chile.Google Scholar
  27. Cortés, S., Lagos, L. D. C. M., Burgos, S., Adaros, H., & Ferreccio, C. (2016). Urinary metal levels in a Chilean community 31 years after the dumping of mine tailings. Journal of Health and Pollution,6(10), 19–27.  https://doi.org/10.5696/2156-9614-6-10.19.CrossRefGoogle Scholar
  28. Da Silva, E. F., Fonseca, E. C., Matos, J. X., Patinha, C., Reis, P., & Santos Oliveira, J. M. (2005). The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the lousal area (Iberian Pyrite Belt, Southern Portugal). Land Degradation and Development,16(2), 213–228.  https://doi.org/10.1002/ldr.659.CrossRefGoogle Scholar
  29. Dean, A.G., Sullivan, K.M., & Soe, M.M. (2013). OpenEpi: Open source epidemiologic statistics for public health, Versión.3.01. https://www.openepi.com/SampleSize/SSPropor.htm.
  30. Demetriades, A., Li, X., Ramsey, M. H., & Thornton, I. (2010). Chemical speciation and bioaccessibility of lead in surface soil and house dust, Lavrion urban area, Attiki, Hellas. Environmental Geochemistry and Health,32(6), 529–552.  https://doi.org/10.1007/s10653-010-9315-9.CrossRefGoogle Scholar
  31. Dold, B. (2006). Element flows associated with marine shore mine tailings deposits. Environmental Science and Technology,40, 752–758.  https://doi.org/10.1021/es051475z.CrossRefGoogle Scholar
  32. Drahota, P., Raus, K., Rychlíková, E., & Rohovec, J. (2018). Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic. Environmental Geochemistry and Health,40(4), 1495–1512.  https://doi.org/10.1007/s10653-017-9999-1.CrossRefGoogle Scholar
  33. Ferreccio, C., González, P. C., Milosavlevic, V., Marshall, G., & Sancha, A. M. (1998). Lung cancer and arsenic exposure in drinking water: A case-control study in northern Chile. Cadernos de Saude Publica,14, 193–198.CrossRefGoogle Scholar
  34. Ferreccio, C., González, C., Milosavlevic, V., Marshall, G., Sancha, A. M., & Smith, A. (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology,11(6), 673–679.CrossRefGoogle Scholar
  35. Franck, U., Klimeczek, H.-J., & Kindler, A. (2014). Social indicators are predictors of airborne outdoor exposures in Berlin. Ecological Indicators,36, 582–593.  https://doi.org/10.1016/j.ecolind.2013.08.023.CrossRefGoogle Scholar
  36. García-Giménez, R., & Jiménez-Ballesta, R. (2017). Mine tailings influencing soil contamination by potentially toxic elements. Environmental Earth Sciences,76(1), 51.  https://doi.org/10.1007/s12665-016-6376-9.CrossRefGoogle Scholar
  37. Instituto Nacional de Estadísticas. (2003). Metodología de clasificación socioeconómica de los hogares chilenos.Google Scholar
  38. International Agency for Research on Cancer. (2012). Arsenic, metals, fibres, and dusts. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 100C.Google Scholar
  39. Johnson, L. R., & Farmer, J. G. (1989). Urinary arsenic concentrations and speciation in Cornwall residents. Environmental Geochemistry and Health,11(2), 39–44.  https://doi.org/10.1007/BF01782991.CrossRefGoogle Scholar
  40. Kim, J., Park, J., & Hwang, W. (2016). Heavy metal distribution in street dust from traditional markets and the human health implications. International Journal of Environmental Research and Public Health,13(12), 820.  https://doi.org/10.3390/ijerph13080820.CrossRefGoogle Scholar
  41. Long, J., Tan, D., Deng, S., & Lei, M. (2018). Pollution and ecological risk assessment of antimony and other heavy metals in soils from the world’s largest antimony mine area, China. Human and Ecological Risk Assessment: An International Journal,24(3), 679–690.  https://doi.org/10.1080/10807039.2017.1396531.CrossRefGoogle Scholar
  42. Luo, X., Yu, S., & Li, X. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution,159(5), 1317–1326.  https://doi.org/10.1016/j.envpol.2011.01.013.CrossRefGoogle Scholar
  43. Ministerio de Salud. (2017). Departamento de Estadística e Información de Salud. http://www.deis.cl/.
  44. Mesías Monsalve, S., Martínez, L., Yohannessen Vásquez, K., Alvarado Orellana, S., Klarián Vergara, J., Martín Mateo, M., et al. (2018). Trace element contents in fine particulate matter (PM25) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile. Environmental Geochemistry and Health,40(3), 1077–1091.  https://doi.org/10.1007/s10653-017-9980-z.CrossRefGoogle Scholar
  45. Miller, J., Hudson-Edwards, K., Lechler, P., Preston, D., & Macklin, M. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. Science of The Total Environment,320(2–3), 189–209.  https://doi.org/10.1016/j.scitotenv.2003.08.011.CrossRefGoogle Scholar
  46. Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2018). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health,40(4), 1187–1208.  https://doi.org/10.1007/s10653-017-0035-2.CrossRefGoogle Scholar
  47. Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration,96(2–3), 183–193.  https://doi.org/10.1016/j.gexplo.2007.04.011.CrossRefGoogle Scholar
  48. Neuberger, J. S., Hu, S. C., Drake, K. D., & Jim, R. (2009). Potential health impacts of heavy-metal exposure at the Tar Creek Superfund site, Ottawa County, Oklahoma. Environmental Geochemistry and Health,31, 47–59.  https://doi.org/10.1007/s10653-008-9154-0.CrossRefGoogle Scholar
  49. Nkosi, V., Wichmann, J., & Voyi, K. (2015). Chronic respiratory disease among the elderly in South Africa: any association with proximity to mine dumps? Environmental Health,14(1), 33.  https://doi.org/10.1186/s12940-015-0018-7.CrossRefGoogle Scholar
  50. Park, J., Hodge, V., Gerstenberger, S., & Stave, K. (2014). Mobilization of toxic elements from an abandoned manganese mine in the Arid Metropolitan Las Vegas (NV, USA) Area. Applied Sciences,4(4), 240–254.  https://doi.org/10.3390/app4020240.CrossRefGoogle Scholar
  51. Peña-Fernández, A., González-Muñoz, M. J., & Lobo-Bedmar, M. C. (2016). Evaluating the effect of age and area of residence in the metal and metalloid contents in human hair and urban topsoils. Environmental Science and Pollution Research,23(21), 21299–21312.  https://doi.org/10.1007/s11356-016-7352-3.CrossRefGoogle Scholar
  52. Plumlee, G. S., & Ziegler, T. L. (2007). The medical geochemistry of dusts, soils, and other earth materials. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (Vol. 9–9, pp. 1–61). Elsevier.  https://doi.org/10.1016/b0-08-043751-6/09050-2.Google Scholar
  53. Proyecto Chañaral UC. (2015). Adaptación ambiental y salud pública post aluvión: Chañaral y Atacama. https://politicaspublicas.uc.cl/wp-content/uploads/2015/11/Diagnóstico_Preliminar_Chanaral_UC_021115.pdf. Accessed 5 July 2018.
  54. Rasse, A. F. (2016). Segregación residencial socioeconómica y desigualdad en las ciudades chilenas (No. 2016/04).Google Scholar
  55. Ruby, M. V., & Lowney, Y. W. (2012). Selective soil particle adherence to hands: Implications for understanding oral exposure to soil contaminants. Environmental Science and Technology,46(23), 12759–12771.  https://doi.org/10.1021/es302473q.CrossRefGoogle Scholar
  56. Salim Akhter, M., & Madany, I. M. (1993). Heavy metals in street and house dust in Bahrain. Water, Air, and Soil Pollution,66(1–2), 111–119.  https://doi.org/10.1007/BF00477063.CrossRefGoogle Scholar
  57. Sims, D. B., Hooda, P. S., & Gillmore, G. K. (2013). Mining activities and associated environmental impacts in arid climates: A literature review. Environment and Pollution,2(4), 22–43.  https://doi.org/10.5539/ep.v2n4p22.CrossRefGoogle Scholar
  58. Squeo, F. A., Arancio, G., & Gutiérrez, J. R. (2008). Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Atacama.Google Scholar
  59. Wilcox, A. C., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V., Otárola, S., et al. (2016). An integrated analysis of the March 2015 Atacama floods. Geophysical Research Letters,43(15), 8035–8043.  https://doi.org/10.1002/2016GL069751.CrossRefGoogle Scholar
  60. Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution,142(1), 1–16.  https://doi.org/10.1016/j.envpol.2005.09.004.CrossRefGoogle Scholar
  61. Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2018). Using urine as a biomarker in human exposure risk associated with arsenic and other heavy metals contaminating drinking groundwater in intensively agricultural areas of Thailand. Environmental Geochemistry and Health,40(1), 323–348.  https://doi.org/10.1007/s10653-017-9910-0.CrossRefGoogle Scholar
  62. World Health Organization. 2008. Manual de vigilancia STEPS de la OMS. El método STEPwise de la OMS para la vigilancia de los factores de riesgo de las enfermedades crónicas. http://www.paho.org/spanish/ad/dpc/nc/panam-steps-manual.pdf. Accessed 28 Jan 2019.
  63. Yohannessen Vásquez, K., Alvarado Orellana, S., Mesías Monsalve, S., Klarián Vergara, J., Silva Zamora, C., Vidal Muñoz, D., et al. (2015). Exposure to fine particles by mine tailing and lung function effects in a panel of schoolchildren, Chañaral, Chile. Journal of Environmental Protection,06(02), 118–128.  https://doi.org/10.4236/jep.2015.62014.CrossRefGoogle Scholar
  64. Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment,355(1–3), 176–186.  https://doi.org/10.1016/j.scitotenv.2005.02.026.CrossRefGoogle Scholar
  65. Zhou, Q., Zheng, N., Liu, J., Wang, Y., Sun, C., Liu, Q., et al. (2015). Residents health risk of Pb, Cd and Cu exposure to street dust based on different particle sizes around zinc smelting plant, Northeast of China. Environmental Geochemistry and Health,37(2), 207–220.  https://doi.org/10.1007/s10653-014-9640-5.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Pablo M. Moya
    • 1
  • Guillermo J. Arce
    • 1
  • Cinthya Leiva
    • 2
  • Alejandra S. Vega
    • 1
  • Santiago Gutiérrez
    • 2
  • Héctor Adaros
    • 3
  • Luis Muñoz
    • 4
  • Pablo A. Pastén
    • 1
    • 5
  • Sandra Cortés
    • 1
    • 2
    • 6
    Email author
  1. 1.Centro de Desarrollo Urbano Sustentable (CEDEUS)SantiagoChile
  2. 2.Departamento de Salud PúblicaPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Hospital Jerónimo Méndez ArancibiaChañaralChile
  4. 4.Comisión Chilena de Energía NuclearLas CondesChile
  5. 5.Departamento de Ingeniería Hidráulica y AmbientalPontificia Universidad Católica de ChileSantiagoChile
  6. 6.Centro Avanzado de Enfermedades Crónicas (ACCDiS)Independencia, SantiagoChile

Personalised recommendations