Evaluation of the raw water quality: physicochemical and toxicological approaches

  • Raylane Pereira Gomes
  • Junilson Augusto de Paula Silva
  • Marcos Celestino Carvalho Junior
  • Winnie Castro Amorin Alburquerque
  • Paulo Sergio Scalize
  • Arlindo Rodrigues Galvão Filho
  • Débora de Jesus Pires
  • José Daniel Gonçalves Vieira
  • Lilian Carla CarneiroEmail author
Original Paper


Environmental degradation has increased, mainly as a result of anthropogenic effects arising from population, industrial and agricultural growth. Water pollution is a problem that affects health, safety and welfare of the whole biota which shares the same environment. In Goiânia and metropolitan region, the main water body is the Meia Ponte River that is used for the abstraction of water, disposal of treated wastewater and effluents. In addition, this river receives wastewater from urban and rural areas. The aim in this present study was to evaluate the quality of raw water by some physical, chemical and toxicological tests. The physicochemical results found high levels of turbidity, conductivity, aluminum, phosphorus and metal iron, manganese, copper and lithium when compared to the standards of the Brazilian legislation. The values found of toxicity demonstrated a high degree of cytotoxicity and genotoxicity. Therefore, it was concluded that the Meia Ponte River has been undergoing constant environmental degradation, causing the poor quality of its waters. Thus, measures for the prevention and recovery should be adopted for the maintenance of the Meia Ponte River.


Anthropogenic Environmental degradation Water pollution Metal Cytotoxicity Genotoxicity 



This study was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES). My sincere acknowledgments to the Sanitation Company of Goiás State (SANEAGO). The authors thank you the CAPES (Coordination of Improvement of Higher Level Personnel), by student scholarship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10653_2019_292_MOESM1_ESM.docx (565 kb)
Supplementary material 1 (DOCX 565 kb)


  1. Aral, H., & Vecchio-Sadus, A. (2008). Toxicity of lithium to humans and the environment—A literature review. Ecotoxicology and Environmental Safety, 70(3), 349–356.Google Scholar
  2. AWWA (American Water Works Association). (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington: American Public Health Association, American Water Works Association and Water Environment Federation.Google Scholar
  3. Baccan, N., de Andrade, J. C., Godinho, O. E., & Barone, J. S. (1979). Química analítica quantitativa elementar. Sao Paulo: Edgard Blucher.Google Scholar
  4. Barreto, L. V., Fraga, M. D. S., Barros, F. M., Rocha, F. A., Amorim, J. D. S., Carvalho, S. R. D., et al. (2014). Relationship between stream flow and water quality in a river section. Revista Ambiente & Água, 9(1), 118–129.Google Scholar
  5. Batista, N. J. C., Cavalcante, A. A. D. C. M., de Oliveira, M. G., Medeiros, E. C. N., Machado, J. L., Evangelista, S. R., et al. (2016). Genotoxic and mutagenic evaluation of water samples from a river under the influence of different anthropogenic activities. Chemosphere, 164, 134–141.Google Scholar
  6. Bianchi, J., Mantovani, M. S., & Marin-Morales, M. A. (2015). Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture. Journal of Environmental Sciences, 36, 102–111.Google Scholar
  7. Botelho, R. G., Rossi, M. L., Maranho, L. A., Olinda, R. A., & Tornisielo, V. L. (2013). Evaluation of surface water quality using an ecotoxicological approach: A case study of the Piracicaba River (São Paulo, Brazil). Environmental Science and Pollution Research, 20(7), 4382–4395.Google Scholar
  8. Brandelero, S. M., de Siqueira, E. Q., & de Sousa, A. R. (2013). Parâmetros físico-químicos da água do Rio Meia Ponte, Goiânia-GO. RETEC-Revista de Tecnologias, 5(1), 48–62.Google Scholar
  9. Calil, P. M., Oliveira, L. D., Kliemann, H. J., & Oliveira, V. D. (2012). Caracterização geomorfométrica e do uso do solo da Bacia Hidrográfica do Alto Meia Ponte, Goiás. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi, 16(4), 433–442.Google Scholar
  10. Cao, Y., Lei, K., Zhang, X., Xu, L., Lin, C., & Yang, Y. (2018). Contamination and ecological risks of toxic metals in the Hai River, China. Ecotoxicology and Environmental Safety, 164, 210–218.Google Scholar
  11. Carvalho, K. Q., Lima, S. B., Passig, F. H., Gusmão, L. K., Souza, D. C., Kreutz, C., et al. (2015). Influence of urban area on the water quality of the Campo River basin, Paraná State, Brazil. Brazilian Journal of Biology, 75(4), 96–106.Google Scholar
  12. Caserta, D., Graziano, A., Monte, G. L., Bordi, G., & Moscarini, M. (2013). Heavy metals and placental fetal-maternal barrier: A mini-review on the major concerns. European Review for Medical and Pharmacological Sciences, 17(16), 2198–2206.Google Scholar
  13. CETESB. (2009). Significado ambiental e sanitário das variáveis de qualidade das águas e dos sedimentos e metodologias analíticas e de amostragem. Série Relatórios. São Paulo: CETESB, Available at: Accessed January 07, 2019.
  14. CETESB (Companhia de Tecnologia e Saneamento Ambiental). (2012). Guia de coleta e preservação de amostras de água, sedimento, comunidades aquáticas e efluentes líquidos. Organizadores, Carlos Jesus Brandão (et al.), São Paulo.Google Scholar
  15. Chauhan, A., Goyal, P., & Varma, A. (2015). In-vitro antibiotic resistance and heavy metal tolerance patterns of gram-positive and gram-negative bacteria isolated from effluent treated water of Delhi, India. Current Pharmaceutical Research, 5(2), 1449–1458.Google Scholar
  16. Chen, M., Lu, G., Wu, J., Yang, C., Niu, X., Tao, X., et al. (2018). Migration and fate of metallic elements in a waste mud impoundment and affected river downstream: A case study in Dabaoshan Mine, South China, China. Ecotoxicology and Environmental Safety, 164, 474–483.Google Scholar
  17. Chowdhury, S., & Balasubramanian, R. (2014). Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Advances in Colloid and Interface Science, 204, 35–56.Google Scholar
  18. Christofoletti, C. A., Pedro-Escher, J., & Fontanetti, C. S. (2013). Assessment of the genotoxicity of two agricultural residues after processing by diplopods using the Allium cepa assay. Water, Air, and Soil pollution, 224(4), 1523.Google Scholar
  19. Conselho Nacional do Meio Ambiente (CONAMA). (2005). Resolução número 357, de 17 de março de 2005. Accessed June 7, 2017.
  20. Costa, A. C., Domingues, G., Duesman, E., de Almeida, I. V., & Vicentini, V. E. P. (2015). Cytotoxicity of waters of the River Peixe (São Paulo-Brazil), in meristematic root cells of Allium cepa L. Bioscience Journal, 31(1), 248–258.Google Scholar
  21. Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233.Google Scholar
  22. DeWeber, J. T., & Wagner, T. (2014). A regional neural network ensemble for predicting mean daily river water temperature. Journal of Hydrology, 517, 187–200.Google Scholar
  23. Düsman, E., Luzza, M., Savegnago, L., Lauxen, D., Vicentini, V. E. P., Tonial, I. B., et al. (2014). Allium cepa L. as a bioindicator to measure cytotoxicity of surface water of the Quatorze River, located in Francisco Beltrão, Paraná, Brazil. Environmental Monitoring and Assessment, 186(3), 1793–1800.Google Scholar
  24. Dyer, F., ElSawah, S., Croke, B., Griffiths, R., Harrison, E., Lucena-Moya, P., et al. (2014). The effects of climate change on ecologically-relevant flow regime and water quality attributes. Stochastic Environmental Research and Risk Assessment, 28(1), 67–82.Google Scholar
  25. Falis, M., Špalková, M., & Legáth, J. (2014). Effects of heavy metals and pesticides on survival of Artemia franciscana. Acta Veterinaria Brno, 83(2), 95–99.Google Scholar
  26. Fant, C., Srinivasan, R., Boehlert, B., Rennels, L., Chapra, S. C., Strzepek, K. M., et al. (2017). Climate change impacts on US water quality using two models: HAWQS and US basins. Water, 9(2), 118.Google Scholar
  27. Fels, L. E., Hafidi, M., & Ouhdouch, Y. (2016). Artemia salina as a new index for assessment of acute cytotoxicity during co-composting of sewage sludge and lignocellulose waste. Waste Management, 50, 194–200.Google Scholar
  28. Fonseca, R. C., Souza, N. A. D., Correa, T. C. L., Garcia, L. F., Reis, L. G. V. D., & Rodriguez, A. G. (2013). Assessment of toxic potential of Cerrado fruit seeds using Artemia salina bioassay. Food Science and Technology (Campinas), 33(2), 251–256.Google Scholar
  29. Freire, R., Bonifácio, C. M., Freitas, F. H., Schneider, R. M., & Tavares, C. R. G. (2013). Nitrogen forms and total phosphorus in water courses: A study at Maringá stream, Paraná State. Acta Scientiarum: Technology, 35(4), 711–716.Google Scholar
  30. Ghosh, P., Thakur, I. S., & Kaushik, A. (2017). Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicology and Environmental Safety, 141, 259–270.Google Scholar
  31. Gomes, A. I., Pires, J. C., Figueiredo, S. A., & Boaventura, R. A. (2014). Optimization of river water quality surveys by multivariate analysis of physicochemical, bacteriological and ecotoxicological data. Water Resource Management, 28(5), 1345–1361.Google Scholar
  32. Hanh, P. T. M., Sthiannopkao, S., Kim, K. W., & Hung, N. Q. (2010). Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam. Environmental Geochemistry and Health, 32(3), 227–236.Google Scholar
  33. Hannah, D. M., & Garner, G. (2015). River water temperature in the United Kingdom: Changes over the 20th century and possible changes over the 21st century. Progress in Physical Geography, 39(1), 68–92.Google Scholar
  34. Hara, R. V., & Marin-Morales, M. A. (2017). In vitro and in vivo investigation of the genotoxic potential of waters from rivers under the influence of a petroleum refinery (São Paulo State—Brazil). Chemosphere, 174, 321–330.Google Scholar
  35. Huang, B., Li, Z., Chen, Z., Chen, G., Zhang, C., Huang, J., et al. (2015). Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River. Environmental Science and Pollution Research, 22(24), 19912–19921.Google Scholar
  36. Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291.Google Scholar
  37. Islam, M. A., Romić, D., Akber, M. A., & Romić, M. (2018). Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environmental Geochemistry and Health, 40(1), 59–85.Google Scholar
  38. Jiang, Z., Qin, R., Zhang, H., Zou, J., Shi, Q., Wang, J., et al. (2014). Determination of Pb genotoxic effects in Allium cepa root cells by fluorescent probe, microtubular immuno fluorescence and comet assay. Plant and Soil, 383(1–2), 357–372.Google Scholar
  39. Johnson, M. F., Wilby, R. L., & Toone, J. A. (2014). Inferring air-water temperature relationships from river and catchment properties. Hydrological Processes, 28(6), 2912–2928.Google Scholar
  40. Khallef, M., Liman, R., Konuk, M., Ciğerci, İ. H., Benouareth, D., Tabet, M., et al. (2015). Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests. Cytotechnology, 67(2), 207–213.Google Scholar
  41. Khan, S., Shahnaz, M., Jehan, N., Rehman, S., Shah, M. T., & Din, I. (2013). Drinking water quality and human health risk in Charsadda district, Pakistan. Journal of Cleaner Production, 60, 93–101.Google Scholar
  42. Kibria, G., Hossain, M. M., Mallick, D., Lau, T. C., & Wu, R. (2016). Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution. Chemosphere, 165, 1–9.Google Scholar
  43. Kumarasamy, P., James, R. A., Dahms, H. U., Byeon, C. W., & Ramesh, R. (2014). Multivariate water quality assessment from the Tamiraparani river basin, Southern India. Environmental Earth Sciences, 71(5), 2441–2451.Google Scholar
  44. Lebrun, J. D., Uher, E., Tusseau-Vuillemin, M. H., & Gourlay-Francé, C. (2014). Essential metal contents in indigenous gammarids related to exposure levels at the river basin scale: Metal-dependent models of bioaccumulation and geochemical correlations. Science of the Total Environment, 466, 100–108.Google Scholar
  45. Li, P., Qian, H., Howard, K. W., Wu, J., & Lyu, X. (2014). Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environmental Monitoring and Assessment, 186(3), 1385–1398.Google Scholar
  46. Libralato, G., Prato, E., Migliore, L., Cicero, A. M., & Manfra, L. (2016). A review of toxicity testing protocols and endpoints with Artemia spp. Ecological Indicators, 69, 35–49.Google Scholar
  47. Liman, R., Ciğerci, İ. H., & Öztürk, N. S. (2015). Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pesticide Biochemistry and Physiology, 118, 38–42.Google Scholar
  48. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., et al. (2013). Human health risk assessment of heavy metals in soil—Vegetable system: A multi-medium analysis. Science of the Total Environment, 463, 530–540.Google Scholar
  49. Loss, A., Pereira, M. G., Beutler, S. J., Perin, A., & Anjos, L. H. C. (2012). Densidade e fertilidade do solo sob sistemas plantio direto e integração lavoura-pecuária no Cerrado, Amazon. Journal of Agriculture and Environmental Sciences, 55(4), 260–268.Google Scholar
  50. Lu, Y., Xu, X., Li, T., Xu, Y., & Wu, X. (2012). The use of a brine shrimp (Artemia salina) bioassay to assess the water quality in Hangzhou section of Beijing-Hangzhou Grand Canal. Bulletin of Environment Contamination and Toxicology, 88(3), 472–476.Google Scholar
  51. Luo, Y., Ficklin, D. L., Liu, X., & Zhang, M. (2013). Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of the Total Environment, 450, 72–82.Google Scholar
  52. Magdaleno, A., Juárez, Á. B., Dragani, V., Saenz, M. E., Paz, M., & Moretton, J. (2014). Ecotoxicological and genotoxic evaluation of Buenos Aires city (Argentina) hospital wastewater. Journal of Toxicology, 2014, 1–10.Google Scholar
  53. Masood, F., & Malik, A. (2013). Mutagenicity and genotoxicity assessment of industrial wastewaters. Environmental Science and Pollution Research, 20(10), 7386–7397.Google Scholar
  54. Meyer, B. N., Ferrigni, N. R., Putnan, J. E., Jacobsen, L. B., Nichols, D. E., & Aughlin, J. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Journal of Medicinal Plants Research, 45(1), 31–34.Google Scholar
  55. Miner, C. A., Dakhin, A. P., Zoakah, A. I., Zaman, M., & Bimba, J. (2016). Physical and microbiological quality of drinking water sources in Gwafan Community, Plateau State, Nigeria. Pyrex Journal of Research in Environmental Studies, 3(1), 01–06.Google Scholar
  56. Mishra, S., Kumar, A., Yadav, S., & Singhal, M. K. (2018). Assessment of heavy metal contamination in water of Kali River using principle component and cluster analysis, India. SWRM, 4(3), 573–581.Google Scholar
  57. Mohamed, A. H., Sheir, S. K., Osman, G. Y., & Azeem, H. H. A. (2014). Toxic effects of heavy metals pollution on biochemical activities of the adult brine shrimp, Artemia salina. Canadian Journal of Pure & Applied Sciences, 8(3), 3019–3028.Google Scholar
  58. Mustapha, A., Aris, A. Z., Juahir, H., Ramli, M. F., & Kura, N. U. (2013). River water quality assessment using environmentric techniques: Case study of Jakara River basin. Environmental Science and Pollution Research, 20(8), 5630–5644.Google Scholar
  59. Naresh, K., Singh, A., & Priya, S. (2013). To study the physico-chemical properties and bacteriological examination of hot spring water from Vashisht region in Distt. Kullu of HP, India. International Research Journal of Environmental Sciences, 2(8), 28–31.Google Scholar
  60. Neto, J. B. S., Júnior, M. G. S., Ucker, F. E., Alonso, R. R. P., & Lima, M. L. (2016). Diagnósticos dos recursos hídricos: Disponibilidade e demanda para a região metropolitana de Goiânia. RENEFARA, 8(8), 149–167.Google Scholar
  61. Netto, E., Madeira, R. A., Silveira, F. Z., Fiori, M. A., Angioleto, E., Pich, C. T., et al. (2013). Evaluation of the toxic and genotoxic potential of acid mine drainage using physicochemical parameters and bioassays. Environmental Toxicology and Pharmacology, 35(3), 511–516.Google Scholar
  62. Nostro, P. L., Ninham, B. W., Carretti, E., Dei, L., & Baglioni, P. (2015). Specific anion effects in Artemia salina. Chemosphere, 135, 335–340.Google Scholar
  63. Oliveira, L. F. C., Calil, P. M., Rodrigues, C., Kliemann, H. J., & Oliveira, V. Á. (2013). Potencial do uso dos solos da bacia hidrográfica do alto rio Meia Ponte, Goiás/potential use by attributes morphometric soil of the upper Meia Ponte watershed, Goiás. Revista Ambiente & Água, 8(1), 222.Google Scholar
  64. Patel, P., Raju, N. J., Reddy, B. S. R., Suresh, U., Sankar, D. B., & Reddy, T. V. K. (2018). Heavy metal contamination in river water and sediments of the Swarnamukhi River basin, India: Risk assessment and environmental implications. Environmental Geochemistry and Health, 40(2), 609–623.Google Scholar
  65. Peng, H., Zheng, X., Chen, L., & Wei, Y. (2016). Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs. Environmental Science and Pollution Research, 23(14), 14362–14372.Google Scholar
  66. Peter, D. H., Castella, E., & Slaveykova, V. I. (2017). Lateral and longitudinal patterns of water physico-chemistry and trace metal distribution and partitioning in a large river floodplain. Science of the Total Environment, 587, 248–257.Google Scholar
  67. Phan, K., Phan, S., Se, S., Sieng, H., Huoy, L., & Kim, K. W. (2018). Assessment of water quality and trace metal contaminations in Mondolkiri province in the northeastern part of Cambodia. Environmental Geochemistry and Health, 41(1), 1–9.Google Scholar
  68. Pohren, R. S., Costa, T. C., & Vargas, V. M. F. (2013). Investigation of sensitivity of the Allium cepa test as an alert system to evaluate the genotoxic potential of soil contaminated by heavy metals. Water, Air, and Soil pollution, 224(3), 1–10.Google Scholar
  69. Poitrasson, F., Vieira, L. C., Seyler, P., Pinheiro, G. M. S., Mulholland, D. S., Bonnet, M. P., et al. (2014). Iron isotope composition of the bulk waters and sediments from the Amazon River basin. Chemical Geology, 377, 1–11.Google Scholar
  70. Powers, S. M., Bruulsema, T. W., Burt, T. P., Chan, N. I., Elser, J. J., Haygarth, P. M., et al. (2016). Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 9(5), 353–356.Google Scholar
  71. Prado, R., García, R., Rioboo, C., Herrero, C., & Cid, A. (2015). Suitability of cytotoxicity endpoints and test microalgal species to disclose the toxic effect of common aquatic pollutants. Ecotoxicology and Environmental Safety, 114, 117–125.Google Scholar
  72. Qin, R., Jiang, W., & Liu, D. (2013). Aluminum can induce alterations in the cellular localization and expression of three major nucleolar proteins in root tip cells of Allium cepa var. agrogarum L. Chemosphere, 90(2), 827–834.Google Scholar
  73. Qin, R., Wang, C., Chen, D., Björn, L. O., & Li, S. (2015). Copper induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage. Environmental Toxicology and Chemistry, 34(5), 1045–1055.Google Scholar
  74. Rank, J., & Nielsen, M. H. (1994). Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research/Environmental Mutagenesis and Related Subjects, 312(1), 17–24.Google Scholar
  75. Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology, 7(4), 785–792.Google Scholar
  76. Rodrigues, G. Z. (2016). Uso do bioensaio com Allium cepa L. e análises físico-químicas e microbiológicas para avaliação da qualidade do Rio da Ilha, RS, Brasil. Acta Toxicológica Argentina, 24(2), 97–104.Google Scholar
  77. Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.Google Scholar
  78. Sahu, R., Gupta, K. A., Agarwal, N. K., & Sinha, S. (2013). Impacts of urban wastes on the physic-chemical characteristics of river Gomti at Luchnow. Research in Environment and Life Sciences, 6(1), 1–4.Google Scholar
  79. Santos, R. M. B., Fernandes, L. S., Pereira, M. G., Cortes, R. M. V., & Pacheco, F. A. L. (2015). A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Science of the Total Environment, 536, 295–305.Google Scholar
  80. Serpa, D., Keizer, J. J., Cassidy, J., Cuco, A., Silva, V., Gonçalves, F., et al. (2014). Assessment of river water quality using an integrated physicochemical, biological and ecotoxicological approach. Environmental Science: Processes & Impacts, 16(6), 1434–1444.Google Scholar
  81. Sikder, M. T., Kihara, Y., Yasuda, M., Mihara, Y., Tanaka, S., Odgerel, D., et al. (2013). River water pollution in developed and developing countries: Judge and assessment of physicochemical characteristics and selected dissolved metal concentration. CLEAN—Soil Air Water, 41(1), 60–68.Google Scholar
  82. Silveira, M. A. D., Ribeiro, D. L., Santos, T. A., Vieira, G. M., Cechinato, C. N., Kazanovski, M., et al. (2016). Mutagenicity of two herbicides widely used on soybean crops by the Allium cepa test. Cytotechnology, 68(4), 1215–1222.Google Scholar
  83. Singh, M., Das, A., Singh, D., Maiti, P., Shabbir, M., & Das, A. (2014). High genotoxicity of shipyard contaminants on Allium cepa and calf thymus DNA. Environmental Chemistry Letters, 12(2), 321–327.Google Scholar
  84. StatSoft Inc. (2012). STATISTICA (data analysis software system), version 7. 2004. Tulsa, USA, 150.Google Scholar
  85. Tang, W., Zhao, Y., Wang, C., Shan, B., & Cui, J. (2013). Heavy metal contamination of overlying waters and bed sediments of Haihe basin in China. Ecotoxicology and Environmental Safety, 98, 317–323.Google Scholar
  86. Tedesco, S. B., & Laughinghouse, I. V. (2012). Bioindicator of genotoxicity: The Allium cepa test. Intech Open Access Publisher.Google Scholar
  87. Udiba, U. U., Stella, A., Balli, G., Dawaki, S. I., Oddy-Obi, I. C., & Agboun, T. D. T. (2015). Toxicity potential of Allium cepa L. as a bioindicator of heavy metal pollution status of River Galma basin around Dakace Industrial Layout, Zaria, Nigeria. International Journal of Biological Sciences and Applications, 2(6), 76–85.Google Scholar
  88. Varol, M. (2013). Dissolved heavy metal concentrations of the Kralkızı, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere, 93(6), 954–962.Google Scholar
  89. Varol, M., Gökot, B., Bekleyen, A., & Şen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. CATENA, 92, 11–21.Google Scholar
  90. Veiga, A. M., Santos, C. C. P., Cardoso, M. R. D., & Lino, N. C. (2013). Caracterização hidromorfológica da bacia do Rio Meia Ponte. Caminhos de Geografia, 14(46), 126–138.Google Scholar
  91. WHO. (2019). Health topics environmental health. Accessed January 07, 2019.
  92. Xu, Y., Chen, T., Cui, F., & Shi, W. (2016). Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water. Chemical Engineering Journal, 287, 225–232.Google Scholar
  93. Xu, X., Lu, Y., Zhang, D., Wang, Y., Zhou, X., Xu, H., et al. (2015). Toxic Assessment of Triclosan and Triclocarban on Artemia salina. Bulletin of Environment Contamination and Toxicology, 95(6), 728–733.Google Scholar
  94. Yang, Y., He, Z., Wang, Y., Fan, J., Liang, Z., & Stoffella, P. J. (2013). Dissolved organic matter in relation to nutrients (N and P) and heavy metals in surface runoff water as affected by temporal variation and land uses—A case study from Indian River Area, south Florida, USA. Agricultural Water Management, 118, 38–49.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Raylane Pereira Gomes
    • 1
  • Junilson Augusto de Paula Silva
    • 2
  • Marcos Celestino Carvalho Junior
    • 3
  • Winnie Castro Amorin Alburquerque
    • 1
  • Paulo Sergio Scalize
    • 4
  • Arlindo Rodrigues Galvão Filho
    • 5
  • Débora de Jesus Pires
    • 2
  • José Daniel Gonçalves Vieira
    • 6
  • Lilian Carla Carneiro
    • 6
    Email author
  1. 1.Graduate Program in Biology of Host-Parasite Relationships, Institute of Tropical Pathology and Public HealthFederal University of GoiásGoiâniaBrazil
  2. 2.State University of GoiásMorrinhosBrazil
  3. 3.School of Electrical, Mechanical and Computer EngineeringFederal University of GoiásGoiâniaBrazil
  4. 4.School of Civil and Environmental EngineeringFederal University of GoiásGoiâniaBrazil
  5. 5.School of Exact Sciences and ComputingPontifical Catholic University of GoiásGoiâniaBrazil
  6. 6.Institute of Tropical Pathology and Public HealthFederal University of GoiásGoiâniaBrazil

Personalised recommendations