Advertisement

Environmental Geochemistry and Health

, Volume 41, Issue 5, pp 2131–2143 | Cite as

Distribution of potentially harmful elements in soils around a large coal-fired power plant

  • Flavio Manoel Rodrigues da Silva JúniorEmail author
  • Paula Florêncio Ramires
  • Marina dos Santos
  • Elisa Rosa Seus
  • Maria Cristina Flores Soares
  • Ana Luíza Muccillo-Baisch
  • Nicolai Mirlean
  • Paulo Roberto Martins Baisch
Original Paper

Abstract

An understanding of the spatial distribution and contribution of a power plant to local soil contamination is important for the planning of soil use and prioritizing remedial actions for public safety. Consequently, the aim of this study was to map the spatial distribution of potentially hazardous elements (PHEs; Cu, Pb, Zn, Ni, Cr, Fe, Mn, Cd, As, and Se) in soils around a large (796 MW) coal-fired power plant in Brazil. For the purpose, 33 soil samples were collected in the area within a radius of approximately 17.5 km from the plant and subsequently analyzed for PHEs. The frequency and direction of winds were also obtained from a meteorological station in the region. The sampling area was divided into four quadrants (northwest: N-NW; northeast: N-NE; southeast: S-SE; southwest: S-SW), and there were significant negative correlations between the distance and the concentrations of Se in the S-SE quadrant and As in the S-SW and S-SE quadrants. There were positive correlations between distance from the plant and the concentration of Mn in the N-NE quadrant and the concentration of Cd in the S-SW quadrant. The dominant direction of the winds was N-NE. The indexes used in this study showed low-to-moderate enrichment factor, but detailed analysis of the dominant quadrant of the winds showed a correlation with higher concentrations in the soils closer to the power plant for at least seven of the PHEs analyzed, especially with regard to As. Therefore, we conclude that the distribution of the metalloid As can be used as a marker of the spatial distribution of contamination from the thermoelectric plant, but the dynamics of the other elements suggests that the presence of other sources of contamination may also compromise the quality of local soils.

Keywords

Metals Arsenic Soil contamination Coal region 

Notes

Supplementary material

10653_2019_267_MOESM1_ESM.doc (74 kb)
Supplementary material 1 (DOC 73 kb)

References

  1. Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219–223.CrossRefGoogle Scholar
  2. ANEEL Agência nacional de energia elétrica. (2008). Atlas de Energia Elétrica no Brasil. http://www.aneel.gov.br. Accessed 31 May 2018.
  3. Barrows, G., Garg, T., & Jha, A. (2018). The economic benefits versus environmental costs of India’s coal-fired power plants.  https://doi.org/10.2139/ssrn.3281904.
  4. Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.CrossRefGoogle Scholar
  5. Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India—Spectroscopical approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 589–600.CrossRefGoogle Scholar
  6. CONAMA—Conselho Nacional do Meio Ambiente. (2009). Resolução no 420, de 28 de dezembro de 2009. “Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas.”, Diário Oficial [da República Federativa do Brasil], Brasília, DF, n° 249, de 30/12/2009 (pp. 81–84).Google Scholar
  7. Corrêia da Silva, Z. (1993). Candiota coalfield: A world class Brazilian coal deposit. International Journal of Coal Geology, 23(1–4), 103–116.CrossRefGoogle Scholar
  8. Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2016). Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA, 139, 44–52.CrossRefGoogle Scholar
  9. da Silva Júnior, F. M. R., Tavella, R. A., Fernandes, C. L. F., Soares, M. C. F., de Almeida, K. A., Garcia, E. M., et al. (2017). Genotoxicity in Brazilian coal miners and its associated factors. Human & Experimental Toxicology.  https://doi.org/10.1177/0960327117745692.CrossRefGoogle Scholar
  10. de Quadros, P. D., Zhalnina, K., Davis-Richardson, A. G., Drew, J. C., Menezes, F. B., Flávio, A. D. O., & Triplett, E. W. (2016). Coal mining practices reduce the microbial biomass, richness and diversity of soil. Applied Soil Ecology, 98, 195–203.CrossRefGoogle Scholar
  11. Dragović, S., Ćujić, M., Slavković-Beškoski, L., Gajić, B., Bajat, B., Kilibarda, M., et al. (2013). Trace element distribution in surface soils from a coal burning power production area: A case study from the largest power plant site in Serbia. CATENA, 104, 288–296.CrossRefGoogle Scholar
  12. Goodarzi, F. (2006). Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel, 85(10–11), 1418–1427.CrossRefGoogle Scholar
  13. Guo, X., Zheng, C. G., & Xu, M. H. (2004). Characterization of arsenic emissions from a coal-fired power plant. Energy & Fuels, 18(6), 1822–1826.CrossRefGoogle Scholar
  14. Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul. Brazil. International Journal of Coal Geology, 68(1–2), 79–116.CrossRefGoogle Scholar
  15. Keegan, T., Farago, M., Thornton, I., Hong, B., Colvile, R., Pesch, B., et al. (2006). Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia. Science of the Total Environment, 358(1–3), 61–71.CrossRefGoogle Scholar
  16. Li, X., & Feng, L. (2010). Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas,(NW, China): Controlling factors and contamination assessments. Journal of Hazardous Materials, 174(1–3), 662–669.CrossRefGoogle Scholar
  17. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853.CrossRefGoogle Scholar
  18. Lu, X., Liu, W., Zhao, C., & Chen, C. (2013). Environmental assessment of heavy metal and natural radioactivity in soil around a coal-fired power plant in China. Journal of Radioanalytical and Nuclear Chemistry, 295, 1845–1854.CrossRefGoogle Scholar
  19. Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3), 409–420.CrossRefGoogle Scholar
  20. Masih, A. (2018). Thar Coalfield: Sustainable Development and an Open Sesame to the Energy Security of Pakistan. Journal of Physics: Conference Series, 989(1), 012004.Google Scholar
  21. Masto, R. E., Singh, M. K., Rout, T. K., Kumar, A., Kumar, S., George, J., Selvi, V.A., Dutta P., Triphati, R.C. & Srivastava, N. K. (2019). Health risks from PAHs and potentially toxic elements in street dust of a coal mining area in India. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-019-00250-5.CrossRefGoogle Scholar
  22. Morsch, V. M., Menegotto, E., & Martins, A. F. (1993). Cádmio em solos e sedimentos das regiões carboenergéticas de Candiota e de Charqueadas. Geochimica Brasiliensis, 7(1), 35–42.Google Scholar
  23. Nanos, N., Grigoratos, T., Martín, J. A. R., & Samara, C. (2015). Scale-dependent correlations between soil heavy metals and As around four coal-fired power plants of northern Greece. Stochastic Environmental Research and Risk Assessment, 29(6), 1531–1543.Google Scholar
  24. Pinto, E. A. D. S., Garcia, E. M., de Almeida, K. A., Fernandes, C. F. L., Tavella, R. A., Soares, M. C. F., et al. (2017). Genotoxicity in adult residents in mineral coal region—A cross-sectional study. Environmental Science and Pollution Research, 24(20), 16806–16814.CrossRefGoogle Scholar
  25. Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion byproducts. International Journal of Coal Geology, 60, 57–72.CrossRefGoogle Scholar
  26. Pires, M., Querol, X., & Teixeira, E. C. (2001). Caracterização do carvão de Candiota e de suas cinzas. Geochimica Brasiliensis, 15(1/2), 113–130.Google Scholar
  27. Pires, M., Fiedler, H., & Teixeira, E.C. (2002a). Distribuição geoquimica de elementos traço no carvão: Modelamento e aspectos ambientais. In E. C. Teixeira & M. Pires (Eds.), Carvão e Meio ambiente (p. 450) FEPAM/PUCRS/UFSC.Google Scholar
  28. Pires, M., Teixeira, E.C., & Querol, X. (2002b). Testes de lixiviação e extração sequencial em sistemas aberto e fechado das cinzas leves do carvão de Candiota—RS, em preparação.Google Scholar
  29. Reddy, M. S., Basha, S., Joshi, H., & Jha, B. (2005). Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Journal of Hazardous Materials, 123(1–3), 242–249.CrossRefGoogle Scholar
  30. Rodriguez-Iruretagoiena, A., de Vallejuelo, S. F. O., Gredilla, A., Ramos, C. G., Oliveira, M. L., Arana, G., et al. (2015). Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Science of the Total Environment, 508, 374–382.CrossRefGoogle Scholar
  31. Roisenberg, C., Loubet, M., Formoso, M. L., Berger, G., Munoz, M., & Dan, N. (2016). Tracing the origin and evolution of geochemical characteristics of waters from the Candiota coal Mine Area (Southern Brazil): Part I. Mine Water and the Environment, 35, 29–43.CrossRefGoogle Scholar
  32. Silva, N. I., Calarge, L. M., Chies, F., Mallmann, J. E., & Zwonok, O. (1999). Caracterização de cinzas volantes para aproveitamento cerâmico. Cerâmica, 45(296), 184–187.CrossRefGoogle Scholar
  33. Stafilov, T., Šajn, R., Arapčeska, M., Kungulovski, I., & Alijagić, J. (2018). Geochemical properties of topsoil around the coal mine and thermoelectric power plant. Journal of Environmental Science and Health, Part A, 53(9), 1–16.CrossRefGoogle Scholar
  34. Stalikas, C. D., Chaidou, C. I., & Pilidis, G. A. (1997). Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Science of the Total Environment, 204(2), 135–146.CrossRefGoogle Scholar
  35. Swaine, D. J. (1990). Trace elements in coal (p. 278). London: Butterworths.Google Scholar
  36. Swaine, D. J., & Goodarzi, F. (1995). Environmental aspects of trace elements in coal (p. 312). Netherlands: Kluwer Academic Ž. Publishers.Google Scholar
  37. Tang, Q., Liu, G., Yan, Z., & Sun, R. (2012). Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China. Fuel, 95, 334–339.CrossRefGoogle Scholar
  38. Tanić, M. N., Ćujić, M. R., Gajić, B. A., Daković, M. Z., & Dragović, S. D. (2018). Content of the potentially harmful elements in soil around the major coal-fired power plant in Serbia: Relation to soil characteristics, evaluation of spatial distribution and source apportionment. Environmental Earth Sciences, 77(1), 28.CrossRefGoogle Scholar
  39. Teixeira, E. C., Migliavacca, D., Pereira Filho, S., Machado, A. G. M., & Dallarosa, J. B. (2008). Study of wet precipitation and its chemical composition in South of Brasil. Anais da Academia Brasileira de Ciências, 80(2), 381–395.CrossRefGoogle Scholar
  40. World Coal Association. (2018). https://www.worldcoal.org. Accessed 01 June 2018.
  41. Zhai, M., Totolo, O., Modisi, M. P., Finkelman, R. B., Kelesitse, S. M., & Menyatso, M. (2009). Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environmental Geochemistry and Health, 31(6), 759.CrossRefGoogle Scholar
  42. Zhang, K., Chai, F., Zheng, Z., Yang, Q., Zhong, X., Fomba, K. W., et al. (2018a). Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area. Journal of Environmental Sciences, 71, 188–196.CrossRefGoogle Scholar
  43. Zhang, K., Qiang, C., & Liu, J. (2018b). Spatial distribution characteristics of heavy metals in the soil of coal chemical industrial areas. Journal of Soils and Sediments, 18(5), 2044–2052.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Flavio Manoel Rodrigues da Silva Júnior
    • 1
    • 2
    Email author
  • Paula Florêncio Ramires
    • 1
    • 2
  • Marina dos Santos
    • 1
    • 2
  • Elisa Rosa Seus
    • 3
  • Maria Cristina Flores Soares
    • 2
  • Ana Luíza Muccillo-Baisch
    • 1
    • 2
  • Nicolai Mirlean
    • 3
  • Paulo Roberto Martins Baisch
    • 3
  1. 1.Laboratório de Ensaios Farmacológicos e Toxicológicos – LEFT, Instituto de Ciências BiológicasUniversidade Federal do Rio Grande do Sul – FURGRio GrandeBrazil
  2. 2.Programa de Pós Graduação em Ciências da SaúdeUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  3. 3.Laboratório de Oceanografia Geológica, Instituto de OceanografiaUniversidade Federal do Rio Grande do Sul – FURGRio GrandeBrazil

Personalised recommendations