Advertisement

Environmental Geochemistry and Health

, Volume 41, Issue 5, pp 2339–2364 | Cite as

Potential CO2 intrusion in near-surface environments: a review of current research approaches to geochemical processes

  • Zahra Derakhshan-Nejad
  • Jing Sun
  • Seong-Taek Yun
  • Giehyeon LeeEmail author
Review Paper

Abstract

Carbon dioxide (CO2) capture and storage (CCS) plays a crucial role in reducing carbon emissions to the atmosphere. However, gas leakage from deep storage reservoirs, which may flow back into near-surface and eventually to the atmosphere, is a major concern associated with this technology. Despite an increase in research focusing on potential CO2 leakage into deep surface features and aquifers, a significant knowledge gap remains in the geochemical changes associated with near-surface. This study reviews the geochemical processes related to the intrusion of CO2 into near-surface environments with an emphasis on metal mobilization and discusses about the geochemical research approaches, recent findings, and current knowledge gaps. It is found that the intrusion of CO2(g) into near-surface likely induces changes in pH, dissolution of minerals, and potential degradation of surrounding environments. The development of adequate geochemical research approaches for assessing CO2 leakage in near-surface environments, using field studies, laboratory experiments, and/or geochemical modeling combined with isotopic tracers, has promoted extensive surveys of CO2-induced reactions. However, addressing knowledge gaps in geochemical changes in near-surface environments is fundamental to advance current knowledge on how CO2 leaks from storage sites and the consequences of this process on soil and water chemistry. For reliable detection and risk management of the potential impact of CO2 leakage from storage sites on the environmental chemistry, currently available geochemical research approaches should be either combined or used independently (albeit in a manner complementarily to one another), and the results should be jointly interpreted.

Graphical abstract

Keywords

CO2 sequestration CO2 leakage CO2 capture and storage (CCS) Near-surface environment CO2-induced geochemical processes 

Notes

Acknowledgements

This research was supported by Korea Ministry of Environment (MOE) as “K-COSEM Research Programs” (Project No. 2014001810002) and a National Research Foundation of Korea (NRF) Grants funded by the Korean Government (NRF-2017R1A6A1A07015374). JS was supported by the Yonsei University Research Fund (Post Doc. Researcher Supporting Program) of 2014 (Project No. 2014-12-0025).

References

  1. Al-Khoury, R., & Bundschuh, J. (2014). Computational models for CO 2 Geo-sequestration & compressed air energy storage (pp. 181–190). New York: Talor & Francis Group.Google Scholar
  2. Altevogt, A. S., & Jaffe, P. R. (2005). Modeling the effects of gas phase CO2 intrusion on the biogeochemistry of variably saturated soils. Water Resources Research, 41(9), 1–9.Google Scholar
  3. Andre, L., Audigane, P., Azaroual, M., & Menjoz, A. (2007). Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Conversion and Management, 48(6), 1782–1797.Google Scholar
  4. Andre, L., Peysson, Y., & Azaroual, M. (2014). Well injectivity during CO2 storage operations in deep saline aquifers—Part 2: Numerical simulations of drying, salt deposit mechanisms and role of capillary forces. International Journal of Greenhouse Gas Control, 22, 301–312.Google Scholar
  5. Apps, J., Zheng, L., Zhang, Y., Xu, T., & Birkholzer, J. (2010). Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transport in Porous Media, 82(1), 215–246.Google Scholar
  6. Ardelan, M., & Steinnes, E. (2010). Changes in mobility and solubility of the redox sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO2 seepage. Biogeosciences, 7, 569–583.Google Scholar
  7. Arts, R., Eiken, O., Chadwick, A., Zweigel, P., van der Meer, L., & Zinszner, B. (2004). Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy, 29(9–10), 1383–1392.Google Scholar
  8. Assayag, N., Matter, J., Ader, M., Goldberg, D., & Agrinier, P. (2009). Water–rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1–2), 227–235.Google Scholar
  9. Atchley, A. L., Maxwell, R. M., & Navarre-Sitchler, A. K. (2013). Human health risk assessment of co2 leakage into overlying aquifers using a stochastic, geochemical reactive transport approach. Environmental Science and Technology, 47(11), 5954–5962.Google Scholar
  10. Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R., & Karaei, M. A. (2015). A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 279(1), 615–630.Google Scholar
  11. Bachelor, P. P., McIntyre, J. I., Amonette, J. E., Hayes, J. C., Milbrath, B. D., & Saripalli, P. (2008). Potential method for measurement of CO2 leakage from underground sequestration fields using radioactive tracers. Journal of Radioanalytical and Nuclear Chemistry, 277(1), 85–89.Google Scholar
  12. Bachu, S. (2008). CO2 storage in geological media: Role, means, status and barriers to deployment. Progress in Energy and Combustion Science, 34(2), 254–273.Google Scholar
  13. Bachu, S., & Celia, M. A. (2009). Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. Geophysical Monograph Series, 183, 203–216.Google Scholar
  14. Bakk, A., Girard, J. F., Lindeberg, E., Aker, E., Wertz, F., Buddensiek, M., et al. (2012). CO2 field lab at Svelvik Ridge: Site suitability. Energy Procedia, 23, 306–312.Google Scholar
  15. Barth, J. A., Myrttinen, A., Becker, V., Nowak, M., & Mayer, B. (2014). Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground. In EGU general assembly conference, Vienna, Austria, 16, 7308.Google Scholar
  16. Benson, S. M., & Cole, D. R. (2008). CO2 sequestration in deep sedimentary formations. Elements, 4, 325–331.Google Scholar
  17. Bethke, C. M. (1996). Geochemical reaction modeling (pp. 246–247)., Concepts and application New York: Oxford University Press.Google Scholar
  18. Boreham, C., Underschultz, J., Stalker, L., Kirste, D., Freifeld, B., Jenkins, C., et al. (2011). Monitoring of CO2 storage in a depleted natural gas reservoir: Gas geochemistry from the CO2CRC Otway project, Australia. International Journal of Greenhouse Gas Control, 5(4), 1039–1054.Google Scholar
  19. Boyd, A. D., Liu, Y., Stephens, J. C., Wilson, E. J., Pollak, M., Peterson, T. R., et al. (2013). Controversy in technology innovation: Contrasting media and expert risk perceptions of the alleged leakage at the Weyburn carbon dioxide storage demonstration project. International Journal of Greenhouse Gas Control, 14, 259–269.Google Scholar
  20. Cahill, A. G., & Jakobsen, R. (2013). Hydro-geochemical impact of CO2 leakage from geological storage on shallow potable aquifers: A field scale pilot experiment. International Journal of Greenhouse Gas Control, 19, 678–688.Google Scholar
  21. Caritat, P. D., Hortle, A., Raistrick, M., Stalvies, C., & Jenkins, C. (2013). Monitoring groundwater flow and chemical and isotopic composition at a demonstration site for carbon dioxide storage in a depleted natural gas reservoir. Applied Geochemistry, 30, 16–32.Google Scholar
  22. Carroll, S., Hao, Y., & Aines, R. (2009). Geochemical detection of carbon dioxide in dilute aquifers. Geochemical Transactions, 10(4), 1–18.Google Scholar
  23. Carroll, S. A., McNab, W. W., Dai, Z., & Torres, S. C. (2013). Reactivity of Mount Simon Sandstone and the Eau Claire Shale under CO2 storage conditions. Environmental Science and Technology, 47(1), 252–261.Google Scholar
  24. Chen, F., Yang, Y., Ma, Y., Hou, H., Zhang, S., & Ma, J. (2016). Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas. Environmental Science Processes & Impacts, 18(5), 547–554.Google Scholar
  25. Choi, H., Piao, J., Woo, N. C., & Cho, H. (2017). Hydrochemical variations in selected geothermal groundwater and carbonated springs in Korea: A baseline study for early detection of CO2 leakage. Environmental Geochemistry and Health, 39, 109–123.Google Scholar
  26. Choi, Y.-S., Young, D., Nešić, S., & Gray, L. G. (2013). Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: A literature review. International Journal of Greenhouse Gas Control, 16(1), S70–S77.Google Scholar
  27. Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celie, M. A., et al. (2009). A benchmark study on problems related to CO2 storage in geologic formations. Computational Geosciences, 13, 409–434.Google Scholar
  28. Cui, G., Wang, Y., Rui, Z., Chen, B., Ren, S., & Zhang, L. (2018). Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers. Energy, 155, 281–296.Google Scholar
  29. Cui, G., Zhang, L., Tan, C., Ren, S., Zhuang, Y., & Enechukwu, C. (2017). Injection of supercritical CO2 for geothermal exploitation from sandstone and carbonate reservoirs: CO2-water-rock interactions and their effects. Journal of CO2 Utilization, 20, 113–128.Google Scholar
  30. Czernichowski-Lauriol, I., Rochelle, C., Gaus, I., Azaroual, M., Pearce, J., & Durst, P. (2006). Geochemical interactions between CO 2 , pore-waters and reservoir rocks (pp. 157–174)., Advances in the geological storage of carbon dioxide Dordrecht: Springer.Google Scholar
  31. Darcis, M., Class, H., & Flemisch, B. (2009). Coupling models of different complexity for the simulation of CO2 storage in saline aquifers. Energy Procedia, 1(1), 1767–1774.Google Scholar
  32. de Orte, M. R., Sarmiento, A. M., DelValls, T. A., & Riba, I. (2014). Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals. Marine Pollution Bulletin, 86(1–2), 59–67.Google Scholar
  33. Derakhshan-Nejad, Z., Yun, S.T., & Lee, G. (2018). Potential effects of soil miosture content on CO2 triggered physicochemical properties of a shallow soil. In Goldschmidt coference, Boston, USA, 12–17 August.Google Scholar
  34. Dethlefsen, F., Kober, R., Schafer, D., Al Hagrey, S. A., Hornbruch, G., Ebert, M., et al. (2013). Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia, 37, 4886–4893.Google Scholar
  35. Dillen, M., Lindeberg, E., Agaard, P., Aker, E., Sather, O., Johansen, H., et al. (2009). A field laboratory for monitoring CO2 leakage. Energy Procedia, 1(1), 2397–2404.Google Scholar
  36. Dogramaci, S. S., & Herczeg, A. L. (2002). Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. Journal of Hydrology, 262(1–4), 50–67.Google Scholar
  37. Edwards, E. J., McCaffery, S., & Evans, J. R. (2005). Phosphorus status determines biomass response to elevated CO2 in a legume: C4 grass community. Global Change Biology, 11, 1968–1981.Google Scholar
  38. Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., & Hoier, L. (2011). Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia, 4, 5541–5548.Google Scholar
  39. Ekene, B., Floyd, A. C., Uche, N. G., Osadebe, B., & Osazee, E. N. (2016). Effects of elevated soil carbon dioxide (CO2) concentrations on spring Wheat (Triticum aestivum L.) and soil chemical properties in Sutton Bonington Campus of the University of Nottingham, UK. Journal of Applied Science and Environmental Management, 20(2), 293–301.Google Scholar
  40. Elaine, B., Darby, P. E., Johnathan Bumgarner, P. G., & Hovorka, S. D. (2009). Geochemical modeling of near-surface CO2 interactions: The critical element in cost-effective long-term monitoring. Energy Procedia, 1(1), 2389–2395.Google Scholar
  41. Fabianska, M., Ciesielczuk, J., Nadudvari, A., Misz-Kennan, M., Kowalski, A., & Kruszewski, L. (2018). Environmental influence of gaseous emissions from self-heating coal waste dumps in Silesia, Poland. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-018-0153-5.CrossRefGoogle Scholar
  42. Feitz, A., Jenkins, C., Schacht, U., McGrath, A., Berko, H., Schroder, I., et al. (2014). An assessment of near surface CO2 leakage detection techniques under Australian conditions. Energy Procedia, 63, 3891–3906.Google Scholar
  43. Freifeld, B. M., Trautz, R. C., Kharaka, Y. K., Phelps, T. J., Myer, L. R., Hovorka, S. D., et al. (2005). The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment. Journal of Geophysical Research, 110, 1–10.Google Scholar
  44. Fritz, B., Jacquot, E., Jacquemont, B., Baldeyrou-Bailly, A., Rosener, M., & Vidal, O. (2010). Geochemical modelling of fluid-rock interactions in the context of the Soultz-sous-Forets geothermal system. Comptes Rendus Geoscience, 342(7), 653–667.Google Scholar
  45. Fu, Q., Lu, P., Konishi, H., Dilmore, R., Xu, H., Seyfried, W. E. J., et al. (2009). Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems: 1. New experiments at 200 °C and 300 bars. Chemical Geology, 258, 125–135.Google Scholar
  46. Gal, F., Michel, K., Pokryszka, Z., Lafortune, S., Garcia, B., Rouchon, V., et al. (2014). Study of the environmental variability of gaseous emanations over a CO2 injection pilot-application to the French Pyrenean foreland. International Journal of Greenhouse Gas Control, 21, 177–190.Google Scholar
  47. Gaus, I. (2010). Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas Control, 4(1), 73–89.Google Scholar
  48. Gentile, R., Dodd, M., Lieffering, M., Brock, S. C., Theobald, P. W., & Newton, P. C. D. (2012). Effects of long-term exposure to enriched CO2 on the nutrient supplying capacity of a grassland soil. Biology and Fertility of Soils, 48, 357–362.Google Scholar
  49. Gibbins, J., & Chalmers, H. (2008). Carbon capture and storage. Energy Policy, 36, 4317–4322.Google Scholar
  50. Golubev, S. V., Benezeth, P., Schott, J., Dandurand, J. L., & Castillo, A. (2009). Siderite dissolution kinetics in acidic aqueous solutions from 25 to 100°C and 0 to 50 atm pCO2. Chemical Geology, 265(1–2), 13–19.Google Scholar
  51. Gunter, W. D., Perkins, E. H., & McCann, T. J. (1993). Aquifer disposal of CO2-rich gases: Reaction design for added capacity. Energy Conversion and Management, 34(9–11), 941–948.Google Scholar
  52. Gunter, W., Wiwehar, B., & Perkins, E. (1997). Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling. Mineralogy and Petrology, 59(1–2), 121–140.Google Scholar
  53. Harvey, O. R., Qafoku, N. P., Cantrell, K. J., Lee, G. H., Amonette, J. E., & Brown, C. F. (2012). Geochemical implications of gas leakage associated with geologic CO2 storage—A qualitative review. Environmental Science and Technology, 47(1), 23–36.Google Scholar
  54. Hellevang, H., Pham, V. T. H., & Aagaard, P. (2013). Kinetic modelling of CO2-water–rock interactions. International Journal of Greenhouse Gas Control, 15, 3–15.Google Scholar
  55. Hillebrand, M., Pflugmacher, S., & Hahn, A. (2016). Toxicological risk assessment in CO2 capture and storage technology. International Journal of Greenhouse Gas Control, 55, 118–143.Google Scholar
  56. Huesemann, M. H., Skillman, A. D., & Crecelius, E. A. (2002). The inhibition of marine nitrification by ocean disposal of carbon dioxide. Marine Pollution Bulletin, 44(2), 142–148.Google Scholar
  57. Humez, P., Audigane, P., Lions, J., Chiaberge, C., & Bellenfant, G. (2011). Modeling of CO2 leakage up through an abandoned well from deep saline aquifer to shallow fresh groundwaters. Transport Porous Media, 90, 153–181.Google Scholar
  58. Humez, P., Lagneau, V., Lions, J., & Negrel, P. (2013). Assessing the potential consequences of CO2 leakage to freshwater resources: A batch-reaction experiment towards an isotopic tracing tool. Applied Geochemistry, 30, 178–190.Google Scholar
  59. Humez, P., Lions, J., Négrel, P., & Lagneau, V. (2014a). CO2 intrusion in freshwater aquifers: Review of geochemical tracers and monitoring tools, classical uses and innovative approaches. Applied Geochemistry, 46, 95–108.Google Scholar
  60. Humez, P., Negrel, P., Lagneau, V., Lions, J., Kloppmann, W., Gal, F., et al. (2014b). CO2–water–mineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test. Applied Geochemistry, 368, 11–30.Google Scholar
  61. Hungate, B. A., Dukes, J. S., Shaw, R., Luo, Y., & Field, C. B. (2003). Nitrogen and climate change. Science, 302, 1512–1513.Google Scholar
  62. IEA. (2004). Prospects for CO 2 capture and storage (p. 250)., Energy technology analysis Paris, France: International Energy Agency, OECD/IEA.Google Scholar
  63. IEA. (2007). Study of potential impacts of leaks from onshore CO 2 storage projects on terrestrial ecosystems. Greenhouse Gas R & D Programme (IEA GHG), Environmental Assessment for CO2 Capture and Storage. Technical Study, UK, p. 53.Google Scholar
  64. IEA. (2008). CO 2 capture and storage, A key carbon abatement option (p. 261). Paris, France: International Energy Agency, OECD/IEA.Google Scholar
  65. IPCC. (2000). Special report on emissions scenarios. A special report of working group III of the Intergovernmental Panel on Climate Change. 92-9169-1136 Cambridge University Press, New York, p. 21.Google Scholar
  66. IPCC. (2005). Carbon capture and storage (p. 431)., Intergovernmental Panel on Climate Change Cambridge: Cambridge University Press.Google Scholar
  67. Jaffe, P.R., & Wang, S. (2003). Potential effect of CO2 releases from deep reservoirs on the quality of fresh-water aquifers. In J. Gale, Y. Kaya (Eds.), Proceedings of the 6th international conference on Greenhouse Gas Control Technologies, 2(1–4) October 2002, Kyoto, Japan. Greenhouse Gas Control technologies, pp. 1657–1660.Google Scholar
  68. Jenkins, C., Cook, P., Ennis-King, J., Underschultz, J., Boreham, C., Dance, T., et al. (2012). Safe storage and effective monitoring of CO2 in depleted gas fields. Proceedings of the National Academy of Sciences, 109(2), 35–41.Google Scholar
  69. Jin, M., Ribeiro, A., Mackay, E., Guimaraes, L., & Bagudu, U. (2016). Geochemical modelling of formation damage risk during CO2 injection in saline aquifers. Journal of Natural Gas Science and Engineering, 35, 703–719.Google Scholar
  70. Jin, J., Tang, C., Armstrong, R., Butterly, C., & Sale, P. (2013). Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant and Soil, 368, 315–328.Google Scholar
  71. Jin, J., Tang, C., Armstrong, R., & Sale, P. (2012). Phosphorus supply enhances the response of legumes to elevated CO2 (FACE) in a phosphorus-deficient Vertisol. Plant and Soil, 358, 91–104.Google Scholar
  72. Jin, J., Tang, C., & Sale, P. (2015). The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Annals of Botany, 116(6), 987–999.Google Scholar
  73. Johnson, G., & Mayer, B. (2011). Oxygen isotope exchange between H2O and CO2 at elevated CO2 pressures: Implications for monitoring of geochemical CO2 storage. Applied Geochemistry, 26(7), 1184–1191.Google Scholar
  74. Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 165, 277–304.Google Scholar
  75. Kaszuba, J. P., & Janecky, D. R. (2013). Geochemical impacts of sequestering carbon dioxide in brine formation. In B. McPherson & E. Sundquist (Eds.), Carbon sequestration and its role in the global carbon cycle (pp. 239–247)., Geophysical monograph series Washington, DC: American Geophysical Union.Google Scholar
  76. Keating, E. H., Fessenden, J., Kanjorski, N., Koning, D. J., & Pawar, R. (2010). The impact of CO2 on shallow groundwater chemistry: Observations at a natural analog site and implications for carbon sequestration. Environmental Earth Sciences, 60(3), 521–536.Google Scholar
  77. Kharaka, Y. K., Cole, D. R., Hovorka, S. D., Gunter, W. D., Knauss, K. G., & Freifeld, B. M. (2006). Gas-water-rock interactions in Frio formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geological Society of America, 34(7), 577–580.Google Scholar
  78. Kharaka, Y. K., Thordsen, J. J., Kakouros, E., Ambats, G., Herkelrath, W. N., Beers, S. R., et al. (2009). Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environmental Earth Science, 60, 273–284.Google Scholar
  79. Kim, S. H., Choi, B. Y., Lee, G., Yun, S. T., & Kim, S. O. (2017a). Compositional data analysis and geochemical modeling of CO2–water–rock interactions in three provinces of Korea. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-017-0057-9.CrossRefGoogle Scholar
  80. Kim, C. Y., Han, W. S., Park, E., Jeong, J., & Xu, T. (2018). CO2 leakage-induced contamination in shallow potable aquifer and associated health risk assessment. Hindawi, 2018, 1–19.Google Scholar
  81. Kim, Y. J., He, W., Ko, D., Chung, H., & Yoo, G. (2017b). Increased N2O emission by inhibited plant growth in the CO2 leaked soil environment: Simulation of CO2 leakage from carbon capture and storage (CCS) site. Science of the Total Environment, 607–608, 1278–1285.Google Scholar
  82. Kirk, M. F. (2011). Variation in energy available to populations of subsurface anaerobes in response to geological carbon storage. Environmental Science and Technology, 45(15), 6676–6682.Google Scholar
  83. Kirsch, K., Navarre-Sitchler, A., Wunsch, A., & Mccray, J. E. (2014). Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions. Environmental Science and Technology, 48(3), 1436–1442.Google Scholar
  84. Knauss, K. G., & Wolery, T. J. (1986). Dependence of albite dissolution kinetics on pH and time at 25 °C and 70 °C. Geochimica et Cosmochimca Acta, 50, 2481–2497.Google Scholar
  85. Ko, D., Yoo, G., Yun, S. T., & Chung, H. (2016). Impacts of CO2 leakage on plants and microorganisms: A review of results from CO2 release experiments and storage sites. Greenhouse Gases Sciences and Technology, 6, 319–338.Google Scholar
  86. L’orange Seigo, S., Dohle, S., & Siegrist, M. (2014). Public perception of carbon capture and storage (CCS): A review. Renewale & Sustainable Energy Reviews, 38, 848–863.Google Scholar
  87. laForce, T., Ennis-King, J., Boreham, C., & Paterson, L. (2014). Residual CO2 saturation estimate using noble gas tracers in a single-well field test: The CO2CRC Otway project. International Journal of Greenhouse Gas Control, 29, 9–21.Google Scholar
  88. Larson, T., & Breecker, D. (2014). Adsorption isotope effects for carbon dioxide from illite-and quartz-packed column experiments. Chemical Geology, 370, 58–68.Google Scholar
  89. Lemieux, J. M. (2011). Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeology Journal, 19(4), 757–778.Google Scholar
  90. Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426–443.Google Scholar
  91. Lions, J., Devau, N., de Lary, L., Dupraz, S., Parmentier, M., Gombert, P., et al. (2014a). Potential impacts of leakage from CO2 geological storage on geochemical processes controlling fresh groundwater quality: A review. International Journal of Greenhouse Gas Control, 22, 165–175.Google Scholar
  92. Lions, J., Humez, P., Pauwels, H., Kloppmann, W., & Czernichowski-Lauriol, I. (2014b). Tracking leakage from a natural CO2 reservoir (Montmiral, France) through the chemistry and isotope signatures of shallow groundwater. Greenhouse Gases, 4(2), 225–243.Google Scholar
  93. Little, M. G., & Jackson, R. B. (2010). Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers. Environmental Science & Technology, 44(23), 9225–9232.Google Scholar
  94. Liu, F., Lu, P., Griffith, C., Hedges, S. W., Soong, Y., Hellevang, H., et al. (2012). CO2–brine–caprock interaction: Reactivity experiments on Eau Claire shale and a review of relevant literature. International Journal of Greenhouse Gas Control, 7, 153–167.Google Scholar
  95. Lu, J., Partin, J. W., Hovorka, S. D., & Wong, C. (2010). Potential risks to freshwater resources as a result of leakage from CO2 geological storage: A batch-reaction experiment. Environmental Earth Sciences, 60(2), 335–348.Google Scholar
  96. Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., et al. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731–739.Google Scholar
  97. Ma, J., Zhang, W., Zhang, S., Zhu, Q., Feng, Q., & Fu, C. (2017). Short-term effects of CO2 leakage on the soil bacterial community in a simulated gas leakage scenario. PeerJ.  https://doi.org/10.7717/peerj.4024.CrossRefGoogle Scholar
  98. Ma, J., Zhu, X., Liu, D., Wang, S., Xue, L., Li, Q., et al. (2014). Effects of simulation leakage of CCS on physical-chemical properties of soil. Energy Procedia, 63, 3215–3219.Google Scholar
  99. Madhu, M., & Hatfield, J. L. (2013). Dynamics plant root growth under increased atmospheric carbon dioxide. Agronomy Journal, 105(3), 657–669.Google Scholar
  100. Matter, J. M., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rock: Implications for geological CO2 sequestration. Geochemistry, Geophysics, Geosystems, 8(2), 1–19.Google Scholar
  101. Mayer, B., Humez, P., Becker, V., Dalkahh, C., Rock, L., Myrttinen, A., et al. (2015). Assessing the usefulness of the isotopic composition of CO2 for leakage monitoring at CO2 storage sites: A review. International Journal of Greenhouse Gas Control, 37, 46–60.Google Scholar
  102. Mehlhorn, J., Beulig, F., Kusel, K., & Planer-Friedrich, B. (2014). Carbon dioxide triggered metal(loid) mobilisation in a mofette. Chemical Geology, 382, 54–66.Google Scholar
  103. Melhorn, J., Byrne, J. M., Kappler, A., & Planer-Friedrich, B. (2016). Time and temperature dependency of carbon dioxide triggered metal(loid) mobilization in soil. Applied Geochemistry, 74, 122–137.Google Scholar
  104. Mickler, P. J., Yang, C., Scanlon, B. R., Reedy, R., & Lu, J. (2013). Potential impacts of CO2 leakage on groundwater chemistry from laboratory batch experiments and field push–pull tests. Environmental Science and Technology, 47(18), 10694–10702.Google Scholar
  105. Millot, R., & Negrel, P. H. (2007). Multi-isotopic (Li, B, Sr, Nd) approach for geochemical reservoir characterization in the Limagne Basin (Massif Central, France). Applied Geochemistry, 22(11), 2307–2325.Google Scholar
  106. Miri, R., & Hellevang, H. (2016). Salt precipitation during CO2 storage—A review. International Journal of Greenhouse Gas Control, 51, 136–147.Google Scholar
  107. Molari, M., Guilini, K., Lott, C., Weber, M., de Beer, D., Meyer, S., et al. (2018). CO2 leakage alters biogeochemical and ecological functions of submarine sands. Science Advances, 4(2), 1–16.Google Scholar
  108. Moonis, M., He, W., Kim, Y., & Yoo, G. (2017). Effect of potential CO2 leakage from carbon capture and storage sites on soil and leachate chemistry. KSCE Journal of Civil Engineering, 21(5), 1640–1647.Google Scholar
  109. Morse, J. W., & Arvidson, R. S. (2002). The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58, 51–84.Google Scholar
  110. Muradov, N. (2014). Liberating energy from carbon: Introduction to decarbonization (p. 432). New York: Springer.Google Scholar
  111. Myers, M., Stalker, L., Ross, A., Dyt, C., & Ho, K. B. (2012). Tracer design for tracking thermal fronts in geothermal reservoirs. Geothermics, 43, 37–44.Google Scholar
  112. Négrel, P., Millot, R., Guerrot, C., Petelet-Giraud, E., Brenot, A., & Malcuit, E. (2012). Heterogeneities and interconnections in groundwaters: Coupled B, Li and stable-isotope variations in a large aquifer system (Eocene Sand aquifer, Southwestern France). Chemical Geology, 296–297, 83–95.Google Scholar
  113. Nghiem, L., Sammon, P., Grabenstetter, J., & Ohkuma, H. (2004). Modeling CO2 storage in aquifers with a fully-coupled geochemical EOS compositional simulator. In Proceedings of SPE/DOE symposium on improved oil recovery. Society of Petroleum Engineers, pp. 17–21.Google Scholar
  114. O’Malley, K. (2010). Surface reactivity and dissolution rate of Galena: Potential impact of CO 2 leakage from geological carbon sequestration on groundwater quality. M.S. thesis, Washington University, p. 66.Google Scholar
  115. Oelkers, E. H., & Cole, D. R. (2008). Carbon dioxide sequestration a solution to a global problem. Elements, 4(5), 305–310.Google Scholar
  116. Oko, E., Wang, M. H., & Olaleye, A. K. (2015). Simplification of detailed rate-based model of post-combustion CO2 capture for full chain CCS integration studies. Fuel, 142, 87–93.Google Scholar
  117. Oldenburg, C., & Lewicki, J. (2006). On leakage and seepage of CO2 from geologic storage sites into surface water. Environmental Geology, 50(5), 691–705.Google Scholar
  118. Olive, A., de Castro Araujo Moreira, A. C., Chang, H. K., do Rosario, F. F., Musse, A. P. S., Melo, C. L., et al. (2014). A comparison of three methods for monitoring CO2 migration in soil and shallow subsurface in the Ressacada Pilot site, Southern Brazil. Energy Procedia, 63, 3992–4002.Google Scholar
  119. Patil, R. H. (2012). Impacts of carbon dioxide gas leaks from geological storage sites on soil ecology and above-ground vegetation. In A. Mahamane (Ed.), Environmental sciences, diversity of ecosystems, INTECH (pp. 27–50). Gainesville: Under CC BY.Google Scholar
  120. Pauluhn, J. (2016). Risk assessment in combustion toxicology: Should carbon dioxide be recognized as a modifier of toxicity or separate toxicological entity? Toxicology Letters, 262, 142–152.Google Scholar
  121. Pawer, R. J., Bromhal, G. S., Chu, S., Dilmore, R. M., Oldenburg, C. M., Stauffer, P. H., et al. (2016). The National Risk Assessment Partnership’s integrated assessment model for carbon storage: A tool to support decision making amidst uncertainty. International Journal of Greenhouse Gas Control, 52, 175–189.Google Scholar
  122. Peter, A., Hornbruch, G., & Dahmke, A. (2011). CO2 leakage test in a shallow aquifer for investigating the geochemical impact of CO2 on groundwater and for developing monitoring methods and concepts. Energy Procedia, 4, 4148–4153.Google Scholar
  123. Peter, A., Lamert, H., Beyer, M., Hornbruch, G., Heinrich, B., Schulz, A., et al. (2012). Investigation of the geochemical impact of CO2 on shallow groundwater: Design and implementation of a CO2 injection test in Northeast Germany. Environmental Earth Sciences, 67, 335–349.Google Scholar
  124. Pham, V. T. H., Lu, P., Aagaard, P., Zhu, C., & Hellevang, H. (2011). On the potential of CO2-water-rock interactions for CO2 storage using a modified kinetic model. International Journal of Greenhouse Gas Control, 5(4), 1002–1015.Google Scholar
  125. Pierce, S., & Sjogersten, S. (2009). Effects of below ground CO2 emissions on plant and microbial communities. Plant and Soil, 325, 197–205.Google Scholar
  126. Pokrovsky, O. S., Golubev, S. V., & Jordan, G. (2009a). Effect of organic and inorganic ligands on calcite and magnesite dissolution rates at 60 °C and 30 atm pCO2. Chemical Geology, 265(1–2), 33–43.Google Scholar
  127. Pokrovsky, O. S., Golubev, S. V., Schott, J., & Castillo, A. (2009b). Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins. Chemical Geology, 265(12), 20–32.Google Scholar
  128. Rasmusson, K., Rasmusson, M., Fagerlund, F., Bensabat, J., Tsang, Y., & Niemi, A. (2014). Analysis of alternative push-pull-test-designs for determining in situ residual trapping of carbon dioxide. International Journal of Greenhouse Gas Control, 27, 155–168.Google Scholar
  129. Rillard, J., Loisy, C., Roux, O. L., Cerepi, A., Garcia, B., Noirez, S., et al. (2015). The DEMO-CO2 project: A vadose zone CO2 and tracer leakage field experiment. International Journal of Greenhouse Gas Control, 39, 302–317.Google Scholar
  130. Roberts, J. J., & Stalker, L. (2017). What have we learned about CO2 leakage from field injection test? Energy Procedia, 114, 5711–5731.Google Scholar
  131. Roth, V. N., Dittmar, T., Gaupp, R., & Gleixner, G. (2015). The molecular composition of dissolved organic matter in forest soils as a function of pH and temperature. PLoS ONE, 122, 122.  https://doi.org/10.1371/journal.pone.0119188.CrossRefGoogle Scholar
  132. Saalfield, S. L., & Bostick, B. C. (2010). Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite. Geochimica et Cosmochimica Acta, 67(18), 5171–5186.Google Scholar
  133. Sakurai, G., Lizumi, T., Nishimon, M., & Yokozawa, M. (2014). How much as the increase in atmospheric CO2 directly affected past soybean production. Scientific Reports, 4, 4978.Google Scholar
  134. Schloemer, S., Furche, M., Dumke, I., Poggenburg, J., Bahr, A., Seeger, C., et al. (2013). A review of continuous soil gas monitoring related to CCS–Technical advances and lessons learned. Applied Geochemistry, 30, 148–160.Google Scholar
  135. Schneider, M. K., Luscher, A., Richter, M., Aeschlimann, U., Hartwig, U. A., Blum, H., et al. (2004). Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology, 10, 1377–1388.Google Scholar
  136. Schott, J., Pokrovsky, O. S., & Oelkers, E. H. (2009). The link between mineral dissolution/precipitation kinetics and solution chemistry. Reviews in Mineralogy and Geochemistry, 70, 207–258.Google Scholar
  137. Schulz, A., Vogt, C., Lamert, H., Peter, A., Heinrich, B., Bahmke, A., et al. (2012). Monitoring of a simulated CO2 leakage in a shallow aquifer using stable carbon isotopes. Environmental Science and Technology, 46(20), 11243–11250.Google Scholar
  138. Shao, H., Qafoku, N. P., Lawter, A. R., Bowden, M. E., & Brown, C. F. (2015). Coupled geochemical impacts of leaking CO2 and contaminants from subsurface storage reservoirs on groundwater quality. Environmental Science and Technology, 49, 8202–8209.Google Scholar
  139. Smith, K. L., Steven, M. D., Jones, D. G., West, J. M., Coombs, P., Green, K. A., et al. (2013). Environmental impacts of CO2 leakage: Recent results from the ASGARD facility, UK. Energy Procedia, 37, 791–799.Google Scholar
  140. Smyth, R. C., Hovorka, S. D., Lu, J., Romanak, K. D., Partin, J. W., Wong, C., et al. (2009). Assessing risk to fresh water resources from long term CO2 injection–laboratory and field studies. Energy Procedia, 1(1), 1957–1964.Google Scholar
  141. Song, J., & Zhang, D. (2012). Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environmental Science and Technology, 47(1), 9–22.Google Scholar
  142. Spadotto, C., & Hornsby, A. G. (2003). Organic compounds in the environment soil sorption of acidic pesticides: Modeling pH effects. Journal of Environmental Quality, 32, 949–956.Google Scholar
  143. Stangeland, A. (2007). A model for the CO2 capture potential. International Journal of Greenhouse Gas Control, 1(4), 418–429.Google Scholar
  144. Strazisar, B. R., Wells, A. W., Diehl, J. R., Hammack, R. W., & Veloski, G. A. (2009). Near-surface monitoring for the ZERT shallow CO2 injection project. International Journal of Green House Gas Control, 3, 736–744.Google Scholar
  145. Tian, Q. Y., Zhang, X. X., Gao, Y., Bai, W., Ge, F., Ma, Y., et al. (2013). Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils. Ecology and Evolution, 3, 1440–1448.Google Scholar
  146. Titeux, H., & Delvaux, B. (2010). Properties of successive horizons in a thick forest floor (mor) reflect a sequence of soil acidification. Geoderma, 158(3–4), 298–302.Google Scholar
  147. Trautz, R. C., Pugh, J. D., Varadharajan, C., Zheng, L., Bianchi, M., Nico, P. S., et al. (2012). Effect of dissolved CO2 on a shallow groundwater system: A controlled release field experiment. Environmental Science and Technology, 47(1), 298–305.Google Scholar
  148. Underschultz, J., Boreham, C., Dance, T., Stalker, L., Freifeld, B., Kirste, D., et al. (2011). CO2 storage in a depleted gas field: An overview of the CO2CRC Otway project and initial results. International Journal of Greenhouse Gas Control, 5(4), 922–932.Google Scholar
  149. Vandewijer, V., van der Meer, B., Hofstee, C., Mulders, F., D’Hoore, D., & Graven, H. (2011). Monitoring the CO2 injection site: K12-B. Energy Procedia, 4, 5471–5478.Google Scholar
  150. Vernet, J. P. (1993). Environmental contamination (pp. 46–48). Amsterdam: ELSEVIER Science Publishers B.V.Google Scholar
  151. Vong, C. Q., Jacquemet, N., Picot-Colbeaux, G., Lions, J., Rohmer, J., & Bouc, O. (2011). Reactive transport modeling for impact assessment of a CO2 intrusion on trace elements mobility within fresh groundwater and its natural attenuation for potential remediation. Energy Procedia, 4, 3171–3178.Google Scholar
  152. Wang, S., & Jaffe, P. R. (2004). Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy Conversion and Management, 45(18–19), 2833–2848.Google Scholar
  153. Wang, J., Zhu, T., Ni, H., Zhong, H., Fu, X., & Wang, J. (2013). Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China. PLoS ONE, 8(6), e66563.  https://doi.org/10.1371/journal.pone.0066563.CrossRefGoogle Scholar
  154. Wei, Y. (2013). Effects of pure and impure carbon dioxide (CO 2 ) on soil chemistry. PhD. Thesis, University of Nottingham, p. 292.Google Scholar
  155. Wei, Y., Cordoba, P., Caramanna, G., Maroto-Valer, M., Nathaniel, P., & Steven, M. D. (2015). Influence of a CO2 long term exposure on the mobilization and speciation of metals in soils. Chemie der Erde, 75(4), 475–482.Google Scholar
  156. Wei, Y., Maroto-Valer, M., & Steven, M. D. (2011). Environmental consequences of potential leaks of CO2 in soil. Energy Procedia, 4, 3224–3230.Google Scholar
  157. Wilkin, R. T., & DiGiulio, D. C. (2010). Geochemical impacts to groundwater from geologic carbon sequestration: Controls on pH and inorganic carbon concentrations from reaction path and kinetic modeling. Environmental Science and Technology, 44(12), 4821–4827.Google Scholar
  158. Witkowski, A., Rusin, A., Majkut, M., Rulik, S., & Stolecka, K. (2015). Advances in carbon dioxide compression and pipeline transportation processes (p. 133). New York: Springer.Google Scholar
  159. Wunsch, A., Navarre-Sitchler, A. K., Moore, J., & McCray, J. E. (2014). Metal release from limestones as high partial-pressures of CO2. Chemical Geology, 363, 40–55.Google Scholar
  160. Xiao, T., Dai, Z., McPherson, Brian, & Viswanathan, H. (2017a). Reactive transport modeling of arsenic mobilization in shallow groundwater: Impacts of CO2 and brine leakage. Geomechanics and Geophysics for Geo-energy and Geo-resources, 3, 339–350.Google Scholar
  161. Xiao, T., Dai, Z., Viswanathan, H., Hakala, A., Cather, M., Jia, W., et al. (2017b). Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs. Scientific Reports, 7, 1–9.Google Scholar
  162. Xu, M., He, Z., Deng, Y., Wu, L., van Nostrand, J. D., Hobbie, S. E., et al. (2013). Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiology, 13, 124.Google Scholar
  163. Yang, C., Dai, Z., Romanak, K. D., Hovorka, S. D., & Treviño, R. H. (2014). Inverse modeling of water-rock-CO2 batch experiments: Potential impacts on groundwater resources at carbon sequestration sites. Environmental Science and Technology, 48(5), 2798–2806.Google Scholar
  164. Yang, F., Lee, X., Theng, B. K. G., Wang, B., Cheng, J., & Wang, Q. (2017). Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil. Environmental Geochemistry and Health, 39(3), 635–647.Google Scholar
  165. Yang, C., Mickler, P. J., Reedy, R., Scanlon, B. R., Romanak, K. D., Nicot, J. P., et al. (2013). Single-well push-pull test for assessing potential impacts of CO2 leakage on groundwater quality in a shallow Gulf Coast aquifer in Cranfield, Mississippi. International Journal of Greenhouse Gas Control, 18, 375–387.Google Scholar
  166. You, S. J., Yin, Y., & Allen, H. E. (1999). Partitioning of organic matter in soils: Effects of pH and water/soil ratio. Science of the Total Environment, 227(2–3), 155–160.Google Scholar
  167. Zech, W., Guggenberger, G., & Schulten, H. R. (1994). Budgets and chemistry of dissolved organic carbon in forest soils: Effects of anthropogenic soil acidification. Science of the Total Environment, 152(1), 49–62.Google Scholar
  168. Zhang, M., & Bachu, S. (2011). Review of integrity of existing wells in relation to CO2 geological storage: What do we know? International Journal of Greenhouse Gas Control, 5(4), 826–840.Google Scholar
  169. Zhang, D., & Song, J. (2014). Mechanisms for geological carbon sequestration. Procedia IUTAM, 10, 319–327.Google Scholar
  170. Zhao, X., Deng, H., Wang, W., Han, F., Li, C., Zhang, H., et al. (2017). Impact of naturally leaking carbon dioxide on soil properties and ecosystems in the Qinghai-Tibet platea. Scientific Reports, 7, 3001.  https://doi.org/10.1038/s41598-017-02500-x.CrossRefGoogle Scholar
  171. Zheng, L., Apps, J. A., Zhang, Y., Xu, T., & Birkholzer, J. T. (2009a). On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chemical Geology, 268(3–4), 281–297.Google Scholar
  172. Zheng, L., Apps, J. A., Zhang, Y., Xu, T., & Birkholzer, J. T. (2009b). Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia, 1(1), 1887–1894.Google Scholar
  173. Zheng, L., Spycher, N., Varadharajan, C., & Trautz, R. (2015). On the mobilization of metals by CO2 leakage into shallow aquifers: Exploring release mechanisms by modeling field and laboratory experiments. Greenhouse Gases: Science and Technology, 5(4), 403–418.Google Scholar
  174. Zhou, X., Chen, Z., & Cui, Y. (2016). Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan, China. Environmental Geochemistry and Health, 38(5), 1067–1082.Google Scholar
  175. Zhou, X., Lakkaraju, V. R., Apple, M., Dobeck, L. M., Gullickson, K., Shaw, J. A., et al. (2012). Experimental observation of signature changes in caulk soil electrical conductivity in response to engineered surface CO2 leakage. International Journal of Greenhouse Gas Control, 7, 20–29.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zahra Derakhshan-Nejad
    • 1
  • Jing Sun
    • 1
  • Seong-Taek Yun
    • 2
  • Giehyeon Lee
    • 1
    • 3
    Email author
  1. 1.Department of Earth System ScienceYonsei UniversitySeoulSouth Korea
  2. 2.Department of Earth and Environmental SciencesKorea UniversitySeoulSouth Korea
  3. 3.Division of Environmental Science and EngineeringPOSTECHPohangRepublic of Korea

Personalised recommendations