Advertisement

Environmental Geochemistry and Health

, Volume 41, Issue 5, pp 2295–2313 | Cite as

Is using nanosilver mattresses/pillows safe? A review of potential health implications of silver nanoparticles on human health

  • Sriram PrasathEmail author
  • Kavitha Palaniappan
Review Paper

Abstract

Human exposure to engineered nanoparticles has become inevitable in today’s extensive commercial use and large-scale production of engineered nanoparticles. Even though several studies have characterised the exposure to nanomaterials during wakeful state (related to occupational exposures and exposures from commercially available particles), very few studies on human exposure during sleep exist. As the study of exposure to all possible nanomaterials during sleep is extensive, this study focuses on exposure to specifically silver nanoparticles which are present in beddings and mattresses. The reasoning behind the use of silver nanoparticles in bedding and related materials, possible routes of entry to various population groups in several sleep positions, exposure characterisation and toxicity potential of such silver nanoparticles are reviewed in this study. The toxicity potential of silver nanoparticles in vivo tests with relation to mammals and in vitro tests on human cells has been tabulated to understand the risks associated during oral, dermal and inhalation exposure to silver nanoparticles. The exposure to humans with regard to dermal absorption and oral intake has been summarised. Although potential inhalation exposure to silver nanoparticles is increasing, only a few studies address the possible toxic effect of inhaled silver particles. Determination of exposure to silver nanoparticles in beddings is a topic that has been less researched, and this review aims to provide background information for future research and help establish a comprehensive risk assessment during sleep in the times of increasing usage of nanoparticles in our daily activities. Despite the current limitations of our understanding, risk assessments must utilise the available data and apply extrapolation procedures in the face of uncertainty, in order to address the needs of regulatory programs. This would enable safe use of the antimicrobial properties of silver nanoparticles without negatively impacting human health. Until then, it would be better to adopt a conservative approach on the usage of silver nanoparticles in daily used commercial items.

Keywords

Silver nanoparticles Sleep exposure characterisation Toxicity Exposure Mattress and pillow exposure 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

References

  1. Aaronson, S. T. (1982). Brain state and body position: A time-lapse video study of sleep. Archives of General Psychiatry, 39(3), 330.  https://doi.org/10.1001/archpsyc.1982.04290030062011.CrossRefGoogle Scholar
  2. Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411(23–24), 1841–1848.  https://doi.org/10.1016/j.cca.2010.08.016.CrossRefGoogle Scholar
  3. Al Lawati, N. M., Patel, S. R., & Ayas, N. T. (2009). Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration. Progress in Cardiovascular Diseases, 51(4), 285–293.  https://doi.org/10.1016/j.pcad.2008.08.001.CrossRefGoogle Scholar
  4. Alihanka, J., & Vaahtoranta, K. (1979). A static charge sensitive bed. A new method for recording body movements during sleep. Electroencephalography and Clinical Neurophysiology, 46(6), 731–734.  https://doi.org/10.1016/0013-4694(79)90113-5.CrossRefGoogle Scholar
  5. Asare, N., Instanes, C., Sandberg, W. J., Refsnes, M., Schwarze, P., Kruszewski, M., et al. (2012). Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology, 291(1–3), 65–72.  https://doi.org/10.1016/j.tox.2011.10.022.CrossRefGoogle Scholar
  6. AshaRani, P. V., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3(2), 279–290.  https://doi.org/10.1021/nn800596w.CrossRefGoogle Scholar
  7. Asmatulu, R. (Ed.). (2013). Nanotechnology safety (1st ed., pp. 41–52). Amsterdam: Elsevier.Google Scholar
  8. Bajpai, S. K., Bajpai, M., Sharma, L., & Yallapu, M. M. (2014). Silver nanoparticles loaded thermosensitive cotton fabric for antibacterial application. Journal of Industrial Textiles, 44(1), 58–69.  https://doi.org/10.1177/1528083712473492.CrossRefGoogle Scholar
  9. Barwick, S. (2018). A new colloidal silver blue man becomes a media darling. The Silver Edge. https://thesilveredge.com/blueman2/. Accessed 5 December 2018.
  10. Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S., & Autrup, H. (2012). Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicology Letters, 208(3), 286–292.  https://doi.org/10.1016/j.toxlet.2011.11.002.CrossRefGoogle Scholar
  11. Bell, S., Crawley, B. A., Oppenheim, B. A., Drucker, D. B., & Morris, J. A. (1996). Sleeping position and upper airways bacterial flora: relevance to cot death. Journal of Clinical Pathology, 49(2), 170–172.  https://doi.org/10.1136/jcp.49.2.170.CrossRefGoogle Scholar
  12. Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D., & Westerhoff, P. (2010). The release of nanosilver from consumer products used in the home. Journal of Environment Quality, 39(6), 1875.  https://doi.org/10.2134/jeq2009.0363.CrossRefGoogle Scholar
  13. Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42(11), 4133–4139.  https://doi.org/10.1021/es7032718.CrossRefGoogle Scholar
  14. Bidgoli, S. A., Mahdavi, M., Rezayat, S. M., Korani, M., Amani, A., & Ziarati, P. (2013). Toxicity assessment of nanosilver wound dressing in Wistar rat. Acta Medica Iranica, 51(4), 203–208.Google Scholar
  15. Boor, B. E., Spilak, M. P., Corsi, R. L., & Novoselac, A. (2015). Characterizing particle resuspension from mattresses: Chamber study. Indoor Air, 25(4), 441–456.  https://doi.org/10.1111/ina.12148.CrossRefGoogle Scholar
  16. Boor, B. E., Spilak, M. P., Laverge, J., Novoselac, A., & Xu, Y. (2017). Human exposure to indoor air pollutants in sleep microenvironments: A literature review. Building and Environment, 125, 528–555.  https://doi.org/10.1016/j.buildenv.2017.08.050.CrossRefGoogle Scholar
  17. Braakhuis, H. M., Cassee, F. R., Fokkens, P. H. B., de la Fonteyne, L. J. J., Oomen, A. G., Krystek, P., et al. (2015). Identification of the appropriate dose metric for pulmonary inflammation of silver nanoparticles in an inhalation toxicity study. Nanotoxicology.  https://doi.org/10.3109/17435390.2015.1012184.CrossRefGoogle Scholar
  18. Butzmann, C. M., Technau-Hafsi, K., & Bross, F. (2015). “Silver man” argyria of the skin after ingestion of a colloidal silver solution. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 13(10), 1030–1032.  https://doi.org/10.1111/ddg.12502.CrossRefGoogle Scholar
  19. Carlson, C., Hussain, S. M., Schrand, A. M. K., Braydich-Stolle, L., Hess, K. L., Jones, R. L., et al. (2008). Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112(43), 13608–13619.  https://doi.org/10.1021/jp712087m.CrossRefGoogle Scholar
  20. Chen, X., & Schluesener, H. J. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176(1), 1–12.  https://doi.org/10.1016/j.toxlet.2007.10.004.CrossRefGoogle Scholar
  21. Cho, E. A., Lee, W. S., Kim, K. M., & Kim, S.-Y. (2008). Occupational generalized argyria after exposure to aerosolized silver. The Journal of Dermatology, 35(11), 759–760.  https://doi.org/10.1111/j.1346-8138.2008.00562.x.CrossRefGoogle Scholar
  22. Cho, H., Sung, J., Song, K., Kim, J., Ji, J., Lee, J., et al. (2013). Genotoxicity of silver nanoparticles in lung cells of sprague dawley rats after 12 weeks of inhalation exposure. Toxics, 1(1), 36–45.  https://doi.org/10.3390/toxics1010036.CrossRefGoogle Scholar
  23. Choi, O., Yu, C.-P., Esteban Fernández, G., & Hu, Z. (2010). Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research, 44(20), 6095–6103.  https://doi.org/10.1016/j.watres.2010.06.069.CrossRefGoogle Scholar
  24. Corbyn, J. A. (1993). Sudden Infant Death due to carbon dioxide and other pollutant accumulation at the face of a sleeping baby. Medical Hypotheses, 41(6), 483–494.  https://doi.org/10.1016/0306-9877(93)90101-U.CrossRefGoogle Scholar
  25. Cruz, G. G. D. L., Rodríguez-Fragoso, P., Reyes-Esparza, J., Rodríguez-López, A., Gómez-Cansino, R., & Rodriguez-Fragoso, L. (2018). Interaction of nanoparticles with blood components and associated pathophysiological effects. In A. C. Gomes & M. P. Sarria (Eds.), Unraveling the safety profile of nanoscale particles and materials—From biomedical to environmental applications. Rijeka: InTech.  https://doi.org/10.5772/intechopen.69386.CrossRefGoogle Scholar
  26. Drake, P. L. (2005). Exposure-related health effects of silver and silver compounds: A review. Annals of Occupational Hygiene, 49(7), 575–585.  https://doi.org/10.1093/annhyg/mei019.CrossRefGoogle Scholar
  27. Farkas, J., Peter, H., Christian, P., Gallego Urrea, J. A., Hassellöv, M., Tuoriniemi, J., et al. (2011). Characterization of the effluent from a nanosilver producing washing machine. Environment International, 37(6), 1057–1062.  https://doi.org/10.1016/j.envint.2011.03.006.CrossRefGoogle Scholar
  28. Foldbjerg, R., Dang, D. A., & Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 85(7), 743–750.  https://doi.org/10.1007/s00204-010-0545-5.CrossRefGoogle Scholar
  29. Gaillet, S., & Rouanet, J.-M. (2015). Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food and Chemical Toxicology, 77, 58–63.  https://doi.org/10.1016/j.fct.2014.12.019.CrossRefGoogle Scholar
  30. George, R., Merten, S., Wang, T. T., Kennedy, P., & Maitz, P. (2014a). In vivo analysis of dermal and systemic absorption of silver nanoparticles through healthy human skin. The Australasian Journal of Dermatology, 55(3), 185–190.  https://doi.org/10.1111/ajd.12101.CrossRefGoogle Scholar
  31. George, R., Merten, S., Wang, T. T., Kennedy, P., & Maitz, P. (2014b). In vivo analysis of dermal and systemic absorption of silver nanoparticles through healthy human skin: Dermal absorption of nanocrystaline silver. Australasian Journal of Dermatology, 55(3), 185–190.  https://doi.org/10.1111/ajd.12101.CrossRefGoogle Scholar
  32. Ghaffari-Moghaddam, M., & Eslahi, H. (2014). Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arabian Journal of Chemistry, 7(5), 846–855.  https://doi.org/10.1016/j.arabjc.2013.11.011.CrossRefGoogle Scholar
  33. Godwin, H., Nameth, C., Avery, D., Bergeson, L. L., Bernard, D., Beryt, E., et al. (2015). Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano, 9(4), 3409–3417.  https://doi.org/10.1021/acsnano.5b00941.CrossRefGoogle Scholar
  34. Hagendorfer, H., Lorenz, C., Kaegi, R., Sinnet, B., Gehrig, R., Goetz, N. V., et al. (2010). Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. Journal of Nanoparticle Research, 12(7), 2481–2494.  https://doi.org/10.1007/s11051-009-9816-6.CrossRefGoogle Scholar
  35. Halken, S., Høst, A., Niklassen, U., Hansen, L. G., Nielsen, F., Pedersen, S., et al. (2003). Effect of mattress and pillow encasings on children with asthma and house dust mite allergy. Journal of Allergy and Clinical Immunology, 111(1), 169–176.  https://doi.org/10.1067/mai.2003.5.CrossRefGoogle Scholar
  36. Hewitt, P. J. (1988). Accumulation of metals in the tissues of occupationally exposed workers. Environmental Geochemistry and Health, 10(3–4), 113–116.  https://doi.org/10.1007/BF01758679.CrossRefGoogle Scholar
  37. Huk, A., Izak-Nau, E., Reidy, B., Boyles, M., Duschl, A., Lynch, I., et al. (2014). Is the toxic potential of nanosilver dependent on its size? Particle and Fibre Toxicology, 11(1), 65.  https://doi.org/10.1186/s12989-014-0065-1.CrossRefGoogle Scholar
  38. Huo, L., Chen, R., Zhao, L., Shi, X., Bai, R., Long, D., et al. (2015). Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials, 61, 307–315.  https://doi.org/10.1016/j.biomaterials.2015.05.029.CrossRefGoogle Scholar
  39. Hursthouse, A., & Kowalczyk, G. (2009). Transport and dynamics of toxic pollutants in the natural environment and their effect on human health: Research gaps and challenge. Environmental Geochemistry and Health, 31(2), 165–187.  https://doi.org/10.1007/s10653-008-9213-6.CrossRefGoogle Scholar
  40. Isaksson, B. (1958). A simple formula for the mental arithmetic of the human body surface area. Scandinavian Journal of Clinical and Laboratory Investigation, 10(3), 283–289.  https://doi.org/10.3109/00365515809087181.CrossRefGoogle Scholar
  41. Jannathul Firdhouse, M., & Lalitha, P. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in Biomaterials, 4(2–4), 113–121.  https://doi.org/10.1007/s40204-015-0042-2.CrossRefGoogle Scholar
  42. Ji, J. H., Jung, J. H., Kim, S. S., Yoon, J.-U., Park, J. D., Choi, B. S., et al. (2007). Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague–Dawley rats. Inhalation Toxicology, 19(10), 857–871.  https://doi.org/10.1080/08958370701432108.CrossRefGoogle Scholar
  43. Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., et al. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague–Dawley rats. Inhalation Toxicology, 20(6), 575–583.  https://doi.org/10.1080/08958370701874663.CrossRefGoogle Scholar
  44. Kim, H. R., Shin, D. Y., Park, Y. J., Park, C. W., Oh, S. M., & Chung, K. H. (2014). Silver nanoparticles induce p53-mediated apoptosis in human bronchial epithelial (BEAS-2B) cells. The Journal of Toxicological Sciences, 39(3), 401–412.CrossRefGoogle Scholar
  45. Kumar, C. S. S. R. (2007). In Nanotechnologies for the life sciences (pp. 36–38). [Weinheim, Germany]: Wiley Interscience. http://mrw.interscience.wiley.com/emrw/3527-610413/home/. Accessed 8 August 2015.
  46. Lara, H. H., Ayala-Nuñez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 8(1), 1.  https://doi.org/10.1186/1477-3155-8-1.CrossRefGoogle Scholar
  47. Larese, F. F., D’Agostin, F., Crosera, M., Adami, G., Renzi, N., Bovenzi, M., et al. (2009). Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 255(1–2), 33–37.  https://doi.org/10.1016/j.tox.2008.09.025.CrossRefGoogle Scholar
  48. Laurent, G. J., & Shapiro, S. D. (Eds.). (2006). Encyclopaedia of respiratory medicine. Vol. 4: […]. Amsterdam: Academic Press.Google Scholar
  49. Laverge, J., Novoselac, A., Corsi, R., & Janssens, A. (2013a). Experimental assessment of exposure to gaseous pollutants from mattresses and pillows while asleep. Building and Environment, 59, 203–210.  https://doi.org/10.1016/j.buildenv.2012.08.020.CrossRefGoogle Scholar
  50. Laverge, J., Novoselac, A., Corsi, R., & Janssens, A. (2013b). Experimental assessment of exposure to gaseous pollutants from mattresses and pillows while asleep. Building and Environment, 59, 203–210.  https://doi.org/10.1016/j.buildenv.2012.08.020.CrossRefGoogle Scholar
  51. Limpiteeprakan, P., & Babel, S. (2016). Leaching potential of silver from nanosilver-treated textile products. Environmental Monitoring and Assessment, 188(3), 156.  https://doi.org/10.1007/s10661-016-5158-x.CrossRefGoogle Scholar
  52. Lindahl, S., & Okmian, L. (1981). Bedside calculation of body surface area for infants and children. Critical Care Medicine, 9(11), 778–779.  https://doi.org/10.1097/00003246-198111000-00005.CrossRefGoogle Scholar
  53. Liu, Y., Beaucham, C. C., Pearce, T. A., & Zhuang, Z. (2014). Assessment of two portable real-time particle monitors used in nanomaterial workplace exposure evaluations. PLoS ONE, 9(8), e105769.  https://doi.org/10.1371/journal.pone.0105769.CrossRefGoogle Scholar
  54. Liu, J., Wang, Z., Liu, F. D., Kane, A. B., & Hurt, R. H. (2012). Chemical transformations of nanosilver in biological environments. ACS Nano, 6(11), 9887–9899.  https://doi.org/10.1021/nn303449n.CrossRefGoogle Scholar
  55. Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., et al. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4), 916–924.  https://doi.org/10.1021/pr0504079.CrossRefGoogle Scholar
  56. Lorenz, C., Hagendorfer, H., von Goetz, N., Kaegi, R., Gehrig, R., Ulrich, A., et al. (2011). Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. Journal of Nanoparticle Research, 13(8), 3377–3391.  https://doi.org/10.1007/s11051-011-0256-8.CrossRefGoogle Scholar
  57. Lorenz, C., Windler, L., von Goetz, N., Lehmann, R. P., Schuppler, M., Hungerbühler, K., et al. (2012). Characterization of silver release from commercially available functional (nano)textiles. Chemosphere, 89(7), 817–824.  https://doi.org/10.1016/j.chemosphere.2012.04.063.CrossRefGoogle Scholar
  58. Lorrain, D., & De Koninck, J. (1998). Sleep position and sleep stages: Evidence of their independence. Sleep, 21(4), 335–340.CrossRefGoogle Scholar
  59. Lovrić, J., Bazzi, H. S., Cuie, Y., Fortin, G. R. A., Winnik, F. M., & Maysinger, D. (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine, 83(5), 377–385.  https://doi.org/10.1007/s00109-004-0629-x.CrossRefGoogle Scholar
  60. Mallick, K., Witcomb, M., & Scurrell, M. (2006). Silver nanoparticle catalysed redox reaction: An electron relay effect. Materials Chemistry and Physics, 97(2–3), 283–287.  https://doi.org/10.1016/j.matchemphys.2005.08.011.CrossRefGoogle Scholar
  61. Marr, D. R., Spitzer, I. M., & Glauser, M. N. (2008). Anisotropy in the breathing zone of a thermal manikin. Experiments in Fluids, 44(4), 661–673.  https://doi.org/10.1007/s00348-007-0425-9.CrossRefGoogle Scholar
  62. McClements, D. J., & Xiao, H. (2017). Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. NPJ Science of Food, 1(1), 1.  https://doi.org/10.1038/s41538-017-0005-1.CrossRefGoogle Scholar
  63. McQueen, R. H., & Ehnes, B. (2018). Antimicrobial textiles and infection prevention: Clothing and the inanimate environment. In G. Bearman, S. Munoz-Price, D. J. Morgan, & R. K. Murthy (Eds.), Infection prevention (pp. 117–126). Cham: Springer.  https://doi.org/10.1007/978-3-319-60980-5_13.CrossRefGoogle Scholar
  64. McShan, D., Ray, P. C., & Yu, H. (2014). Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis, 22(1), 116–127.  https://doi.org/10.1016/j.jfda.2014.01.010.CrossRefGoogle Scholar
  65. Milošević, M., Radoičić, M., Šaponjić, Z., Nunney, T., Marković, D., Nedeljković, J., et al. (2013). In situ generation of Ag nanoparticles on polyester fabrics by photoreduction using TiO2 nanoparticles. Journal of Materials Science, 48(16), 5447–5455.  https://doi.org/10.1007/s10853-013-7338-1.CrossRefGoogle Scholar
  66. Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., de Camargo, E. R., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103–110.  https://doi.org/10.1016/j.ijantimicag.2009.01.017.CrossRefGoogle Scholar
  67. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353.  https://doi.org/10.1088/0957-4484/16/10/059.CrossRefGoogle Scholar
  68. Mundt, E. (2001). Non-buoyant pollutant sources and particles in displacement ventilation. Building and Environment, 36(7), 829–836.  https://doi.org/10.1016/S0360-1323(01)00008-7.CrossRefGoogle Scholar
  69. Munger, M. A., Radwanski, P., Hadlock, G. C., Stoddard, G., Shaaban, A., Falconer, J., et al. (2014a). In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 1–9.  https://doi.org/10.1016/j.nano.2013.06.010.CrossRefGoogle Scholar
  70. Munger, M. A., Radwanski, P., Hadlock, G. C., Stoddard, G., Shaaban, A., Falconer, J., et al. (2014b). In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 10(1), 1–9.  https://doi.org/10.1016/j.nano.2013.06.010.CrossRefGoogle Scholar
  71. Murthy, C. L. S., Bharti, B., Malhi, P., & Khadwal, A. (2015). Sleep habits and sleep problems in healthy preschoolers. The Indian Journal of Pediatrics, 82(7), 606–611.  https://doi.org/10.1007/s12098-015-1728-0.CrossRefGoogle Scholar
  72. Nam, H.-S., Park, C.-S., Crane, J., & Siebers, R. (2004). Endotoxin and house dust mite allergen levels on synthetic and buckwheat pillows. Journal of Korean Medical Science, 19(4), 505.  https://doi.org/10.3346/jkms.2004.19.4.505.CrossRefGoogle Scholar
  73. NIOSH. (2015). External review draft—Current intelligence bulletin: Health effects of occupational exposure to silver nanomaterials. By R. D. Zumwalde, E. D. Kuempel, & Holdsworth G. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health.Google Scholar
  74. Nowack, B., Krug, H. F., & Height, M. (2011). 120 Years of nanosilver history: Implications for policy makers. Environmental Science and Technology, 45(4), 1177–1183.  https://doi.org/10.1021/es103316q.CrossRefGoogle Scholar
  75. Oberdörster, G., Elder, A., & Rinderknecht, A. (2009). Nanoparticles and the brain: Cause for concern? Journal of Nanoscience and Nanotechnology, 9(8), 4996–5007.CrossRefGoogle Scholar
  76. Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2(1), 8.  https://doi.org/10.1186/1743-8977-2-8.CrossRefGoogle Scholar
  77. Oksenberg, A., & Gadoth, N. (2014). Are we missing a simple treatment for most adult sleep apnea patients? The avoidance of the supine sleep position. Journal of Sleep Research, 23(2), 204–210.  https://doi.org/10.1111/jsr.12097.CrossRefGoogle Scholar
  78. Olin, S. S. (2000). The relevance of the rat lung response to particle overload for human risk assessment: A workshop consensus report. Inhalation Toxicology, 12(1–2), 1–17.  https://doi.org/10.1080/08958370050029725.CrossRefGoogle Scholar
  79. Oller, A. R., & Oberdörster, G. (2010). Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values. Regulatory Toxicology and Pharmacology, 57(2–3), 181–194.  https://doi.org/10.1016/j.yrtph.2010.02.006.CrossRefGoogle Scholar
  80. Ostiguy, C., & IRSST (Québec). (2006). In Nanoparticles: Actual knowledge about occupational health and safety risks and prevention measures (pp. 56–89). Montréal: Institut de recherche Robert-Sauvé en santé et en sécurité du travail du Québec.Google Scholar
  81. Park, S., Lee, Y. K., Jung, M., Kim, K. H., Chung, N., Ahn, E.-K., et al. (2007). Cellular Toxicity of Various Inhalable Metal Nanoparticles on Human Alveolar Epithelial Cells. Inhalation Toxicology, 19(s1), 59–65.  https://doi.org/10.1080/08958370701493282.CrossRefGoogle Scholar
  82. Poon, V. K. M., & Burd, A. (2004). In vitro cytotoxity of silver: implication for clinical wound care. Burns, 30(2), 140–147.  https://doi.org/10.1016/j.burns.2003.09.030.CrossRefGoogle Scholar
  83. Popovech, M. A. (2014). Inhaled nano-sized silver particles cause pulmonary and hepatic dysfunction via oxidative stress and inflammatory pathways. Accessed 4 August 2015Google Scholar
  84. Quadros, M. E., Pierson, R., Tulve, N. S., Willis, R., Rogers, K., Thomas, T. A., et al. (2013). Release of silver from nanotechnology-based consumer products for children. Environmental Science and Technology, 47(15), 8894–8901.  https://doi.org/10.1021/es4015844.CrossRefGoogle Scholar
  85. Radetić, M. (2013). Functionalization of textile materials with silver nanoparticles. Journal of Materials Science, 48(1), 95–107.  https://doi.org/10.1007/s10853-012-6677-7.CrossRefGoogle Scholar
  86. Reidy, B., Haase, A., Luch, A., Dawson, K., & Lynch, I. (2013). Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials, 6(6), 2295–2350.  https://doi.org/10.3390/ma6062295.CrossRefGoogle Scholar
  87. Schluesener, J. K., & Schluesener, H. J. (2013). Nanosilver: Application and novel aspects of toxicology. Archives of Toxicology, 87(4), 569–576.  https://doi.org/10.1007/s00204-012-1007-z.CrossRefGoogle Scholar
  88. Schneider, T., Brouwer, D. H., Koponen, I. K., Jensen, K. A., Fransman, W., Van Duuren-Stuurman, B., et al. (2011). Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. Journal of Exposure Science & Environmental Epidemiology, 21(5), 450–463.  https://doi.org/10.1038/jes.2011.4.CrossRefGoogle Scholar
  89. Seltenrich, N. (2013). Nanosilver: Weighing the risks and benefits. Environmental Health Perspectives, 121(7), a220–a225.  https://doi.org/10.1289/ehp.121-a220.CrossRefGoogle Scholar
  90. Seo, D., Yoon, W., Park, S., Kim, J., & Kim, J. (2008). The preparation of hydrophobic silver nanoparticles via solvent exchange method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313–314, 158–161.  https://doi.org/10.1016/j.colsurfa.2007.04.086.CrossRefGoogle Scholar
  91. Shahare, B., & Yashpal, M. (2013). Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicology Mechanisms and Methods, 23(3), 161–167.  https://doi.org/10.3109/15376516.2013.764950.CrossRefGoogle Scholar
  92. Singh, R., Swanner, J., Mims, J., Akman, S., Furdui, C., Torti, S., et al. (2015). Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. International Journal of Nanomedicine, 10, 3937.  https://doi.org/10.2147/IJN.S80349.CrossRefGoogle Scholar
  93. Snedeker, S. M. (Ed.). (2014). Toxicants in food packaging and household plastics: Exposure and health risks to consumers. London: Springer.Google Scholar
  94. Sotiriou, G. A., & Pratsinis, S. E. (2010). Antibacterial activity of nanosilver ions and particles. Environmental Science and Technology, 44(14), 5649–5654.  https://doi.org/10.1021/es101072s.CrossRefGoogle Scholar
  95. Spilak, M. P., Boor, B. E., Novoselac, A., & Corsi, R. L. (2014). Impact of bedding arrangements, pillows, and blankets on particle resuspension in the sleep microenvironment. Building and Environment, 81, 60–68.  https://doi.org/10.1016/j.buildenv.2014.06.010.CrossRefGoogle Scholar
  96. Spitzer, I. M., Marr, D. R., & Glauser, M. N. (2010). Impact of manikin motion on particle transport in the breathing zone. Journal of Aerosol Science, 41(4), 373–383.  https://doi.org/10.1016/j.jaerosci.2010.01.009.CrossRefGoogle Scholar
  97. Stebounova, L. V., Adamcakova-Dodd, A., Kim, J., Park, H., O’Shaughnessy, P. T., Grassian, V. H., et al. (2011). Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Particle and Fibre Toxicology, 8(1), 5.  https://doi.org/10.1186/1743-8977-8-5.CrossRefGoogle Scholar
  98. Stefaniak, A. B., Duling, M. G., Lawrence, R. B., Thomas, T. A., LeBouf, R. F., Wade, E. E., et al. (2014). Dermal exposure potential from textiles that contain silver nanoparticles. International Journal of Occupational and Environmental Health, 20(3), 220–234.  https://doi.org/10.1179/2049396714Y.0000000070.CrossRefGoogle Scholar
  99. Sulaiman, F. A., Akanji, M. A., Oloyede, H. O. B., Sulaiman, A. A., Olatunde, A., Joel, E. B., et al. (2015). Oral exposure to silver/gold nanoparticles: Status of rat lipid profile, serum metabolites and tissue morphology. Journal of Medical Sciences (Faisalabad), 15(2), 71–79.  https://doi.org/10.3923/jms.2015.71.79.CrossRefGoogle Scholar
  100. Sung, J. H., Ji, J. H., Song, K. S., Lee, J. H., Choi, K. H., Lee, S. H., et al. (2011). Acute inhalation toxicity of silver nanoparticles. Toxicology and Industrial Health, 27(2), 149–154.  https://doi.org/10.1177/0748233710382540.CrossRefGoogle Scholar
  101. Sung, J. H., Ji, J. H., Yoon, J. U., Kim, D. S., Song, M. Y., Jeong, J., et al. (2008). Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology, 20(6), 567–574.  https://doi.org/10.1080/08958370701874671.CrossRefGoogle Scholar
  102. Świdwińska-Gajewska, A., & Czerczak, S. (2015). Nanosilver—Occupational exposure limits. Medycyna Pracy.  https://doi.org/10.13075/mp.5893.00177.CrossRefGoogle Scholar
  103. Takenaka, E., Karg, W., Möller, C., & Ro, S. (2000). A morphologic study on the fate of ultrafine silver particles: Distribution pattern of phagocytized metallic silver in vitro and in vivo. Inhalation Toxicology, 12(s3), 291–299.  https://doi.org/10.1080/08958370050165166.CrossRefGoogle Scholar
  104. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., et al. (2001). Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 109(s4), 547–551.  https://doi.org/10.1289/ehp.01109s4547.CrossRefGoogle Scholar
  105. Tang, S., Wang, M., Germ, K. E., Du, H.-M., Sun, W.-J., Gao, W.-M., et al. (2015). Health implications of engineered nanoparticles in infants and children. World Journal of Pediatrics, 11(3), 197–206.  https://doi.org/10.1007/s12519-015-0028-0.CrossRefGoogle Scholar
  106. Trop, M., Novak, M., Rodl, S., Hellbom, B., Kroell, W., & Goessler, W. (2006). Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. The Journal of Trauma: Injury, Infection, and Critical Care, 60(3), 648–652.  https://doi.org/10.1097/01.ta.0000208126.22089.b6.CrossRefGoogle Scholar
  107. Tulve, N. S., Stefaniak, A. B., Vance, M. E., Rogers, K., Mwilu, S., LeBouf, R. F., et al. (2015). Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. International Journal of Hygiene and Environmental Health, 218(3), 345–357.  https://doi.org/10.1016/j.ijheh.2015.02.002.CrossRefGoogle Scholar
  108. U.S. EPA. (2006). U.S. EPA. Air quality criteria for particulate matter (Final Report, April 1996). U.S. Environmental Protection Agency, Washington, D.C., EPA 600/P-95/001.Google Scholar
  109. U.S. EPA. (2010). State of the science literature review: Everything nanosilver and more.Google Scholar
  110. Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D., et al. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769–1780.  https://doi.org/10.3762/bjnano.6.181.CrossRefGoogle Scholar
  111. von Goetz, N., Lorenz, C., Windler, L., Nowack, B., Heuberger, M., & Hungerbühler, K. (2013a). Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: Experiments and exposure modeling. Environmental Science and Technology, 47(17), 9979–9987.  https://doi.org/10.1021/es304329w.CrossRefGoogle Scholar
  112. von Goetz, N., Lorenz, C., Windler, L., Nowack, B., Heuberger, M., & Hungerbühler, K. (2013b). Migration of Ag- and TiO 2 -(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environmental Science and Technology, 47(17), 9979–9987.  https://doi.org/10.1021/es304329w.CrossRefGoogle Scholar
  113. Widmer, R. P. (2010). Oral health of children with respiratory diseases. Paediatric Respiratory Reviews, 11(4), 226–232.  https://doi.org/10.1016/j.prrv.2010.07.006.CrossRefGoogle Scholar
  114. Wilde-Frenz, J., & Schulz, H. (1983). Rate and distribution of body movements during sleep in humans. Perceptual and Motor Skills, 56(1), 275–283.  https://doi.org/10.2466/pms.1983.56.1.275.CrossRefGoogle Scholar
  115. William, E. H., & Donald, M. P. (1940). Argyria. The pharmacology of silver. Archives of Dermatology, 41(5), 995.  https://doi.org/10.1001/archderm.1940.01490110181026.CrossRefGoogle Scholar
  116. Woodcock, A. A., Steel, N., Moore, C. B., Howard, S. J., Custovic, A., & Denning, D. W. (2006). Fungal contamination of bedding. Allergy, 61(1), 140–142.  https://doi.org/10.1111/j.1398-9995.2005.00941.x.CrossRefGoogle Scholar
  117. World Health Organisation. (1996). World Health Organization (1996) Silver in drinking water: Background document for the development of WHO Guidelines for drinking water quality. WHO, Geneva, WHO/SDE/WSH/03.04/14.Google Scholar
  118. Wright, J. B., Lam, K., Hansen, D., & Burrell, R. E. (1999). Efficacy of topical silver against fungal burn wound pathogens. American Journal of Infection Control, 27(4), 344–350.  https://doi.org/10.1016/S0196-6553(99)70055-6.CrossRefGoogle Scholar
  119. Yan, Y., Yang, H., Li, J., Lu, X., & Wang, C. (2012). Release behavior of nano-silver textiles in simulated perspiration fluids. Textile Research Journal, 82(14), 1422–1429.  https://doi.org/10.1177/0040517512439922.CrossRefGoogle Scholar
  120. Zhang, X., Ahmadi, G., Qian, J., & Ferro, A. (2008). Particle Detachment, Resuspension and Transport Due to Human Walking in Indoor Environments. Journal of Adhesion Science and Technology, 22(5–6), 591–621.  https://doi.org/10.1163/156856108X305624.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of NewcastleCallahanAustralia
  2. 2.University of NewcastleSingaporeSingapore

Personalised recommendations