Advertisement

Mineralogical, compositional and isotope characterization of human kidney stones (urolithiasis) in a Sri Lankan population

  • Rohana ChandrajithEmail author
  • Anushka Weerasingha
  • Kusala M. Premaratne
  • Dhanushke Gamage
  • Anuruddha M. Abeygunasekera
  • Michael M. Joachimski
  • Atula Senaratne
Original Paper
  • 41 Downloads

Abstract

In order to understand the processes of stone formation, compositional, spectroscopic, mineralogical and crystallographic characteristics of human urinary stones collected from patients in Sri Lanka were investigated in detail. The data showed that the majority of urinary calculi were calcium oxalate, either whewellite or weddellite. Other solid phases of stones were composed of struvite, uricite and hydroxylapatite. However, mixed compositions were common except for whewellite stones which occur frequently in pure form. Scanning electron microscope observations and associated energy-dispersive X-ray analyses revealed that whewellite or weddellite was well crystalized compared to other stones types, while phosphate stones were mostly cryptocrystalline. The average δ13C and δ18O of stones were − 32.2‰ (− 37.3 to − 17.4‰) and − 24.2‰ (− 26.7‰ to − 8.9‰), respectively. The δ13C values were highly depleted compared to North American and European urinary stones. This may be due to food habits of Asians who consume rice as the staple food.

Keywords

Urinary stones FTIR Calcium oxalate monohydrate Hydroxylapatite Carbon isotopes Trace elements 

Notes

Acknowledgements

Dr. Stefan Krumm of GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, is acknowledged for his help in XRD analysis. The study was performed with the approval of ethics committee at the Colombo South General Hospital, in compliance with the Helsinki Declaration. The authors declare that they have no conflicts of interest. This research study was funded by a research grant from the University of Peradeniya (RG/AF 2013/71/S) offered to RC and AS.

References

  1. Abboud, I. A. (2008). Mineralogy and chemistry of urinary stones: Patients from North Jordan. Environmental Geochemistry and Health, 30(5), 445–463.  https://doi.org/10.1007/s10653-007-9128-7.CrossRefGoogle Scholar
  2. Abeywickarama, B., Ralapanawa, U., & Chandrajith, R. (2015). Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka. Environmental Geochemistry and Health, 38(5), 1203–1214.  https://doi.org/10.1007/s10653-015-9785-x.CrossRefGoogle Scholar
  3. Afaj, A. H., & Sultan, M. A. (2005). Mineralogical composition of the urinary stones from different provinces in Iraq. The Scientific World Journal, 5, 24–38.  https://doi.org/10.1100/tsw.2005.2.CrossRefGoogle Scholar
  4. Antonakos, A., Liarokapis, E., & Leventouri, T. (2007). Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 28(19), 3043–3054.  https://doi.org/10.1016/j.biomaterials.2007.02.028.CrossRefGoogle Scholar
  5. Athanasiadou, D., Godelitsas, A., Sokaras, D., Karydas, A.-G., Dotsika, E., Xanthos, S., et al. (2017). New Insights into the chemical and isotopic composition of human body biominerals. II: COM kidney stones from Greece. International Archives of Urology and Complications, 3, 020.  https://doi.org/10.23937/2469-5742/1510020.CrossRefGoogle Scholar
  6. Ayliffe, L. K., Cerling, T. E., Robinson, T., West, A. G., Sponheimer, M., Passey, B. H., et al. (2004). Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia, 139(1), 11–22.  https://doi.org/10.1007/s00442-003-1479-x.CrossRefGoogle Scholar
  7. Bazin, D., Chevallier, P., Matzen, G., Jungers, P., & Daudon, M. (2007). Heavy elements in urinary stones. Urological Research, 35(4), 179–184.  https://doi.org/10.1007/s00240-007-0099-z.CrossRefGoogle Scholar
  8. Bellizzi, V., De Nicola, L., Minutolo, R., Russo, D., Cianciaruso, B., Andreucci, M., et al. (1998). Effects of water hardness on urinary risk factors for kidney stones in patients with idiopathic nephrolithiasis. Nephron, 81, 66–70.  https://doi.org/10.1159/000046301.CrossRefGoogle Scholar
  9. Bhatt, P. A., & Paul, P. (2008). Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR. Journal of Chemical Sciences, 120(2), 267–273.  https://doi.org/10.1007/s12039-008-0032-1.CrossRefGoogle Scholar
  10. Cerling, T. E., Wittemyer, G., Rasmussen, H. B., Vollrath, F., Cerling, C. E., Robinson, T. J., et al. (2006). Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 371–373.  https://doi.org/10.1073/pnas.0509606102.CrossRefGoogle Scholar
  11. Chandrajith, R., Wijewardana, G., Dissanayake, C. B., & Abeygunasekara, A. (2006). Biomineralogy of human urinary calculi (kidney stones) from some geographic regions of Sri Lanka. Environmental Geochemistry and Health, 28(4), 393–399.  https://doi.org/10.1007/s10653-006-9048-y.CrossRefGoogle Scholar
  12. Channa, N. A., Ghangro, A. B., Soomro, A. M., & Noorani, L. (2007). Analysis of kidney stones by FT-IR spectroscopy. JLUMHS, 6(2), 66–73.Google Scholar
  13. Chatterjee, P., Chakraborty, A., & Mukherjee, A. K. (2018). Phase composition and morphological characterization of human kidney stones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.  https://doi.org/10.1016/j.saa.2018.04.005.CrossRefGoogle Scholar
  14. Chelfouh, N., Grenier, N., Higueret, D., Trillaud, H., Levantal, O., Pariente, J. L., et al. (1998). Characterization of urinary calculi: In vitro study of” twinkling artifact” revealed by color-flow sonography. AJR. American Journal of Roentgenology, 171(4), 1055–1060.CrossRefGoogle Scholar
  15. Daudon, M., Bader, C. A., & Jungers, P. (1993). Urinary calculi: Review of classification methods and correlations with etiology. Scanning Microscopy, 7(3), 1081–1106.Google Scholar
  16. Deganello, S. (1981). The structure of whewellite, CaC2O4·H2O at 328 K. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 37(4), 826–829.CrossRefGoogle Scholar
  17. Durgawale, P., Shariff, A., Hendre, A., Patil, S., & Sontakke, A. (2010). Chemical analysis of stones and its significance in urolithiasis. Biomedical Research, 21(3), 305–310.Google Scholar
  18. Echigo, T., Kimata, M., Kyono, A., & Shimizu, M. (2005). Re-investigation of the crystal structure of whewellite [Ca(C2O4)·H2O] and the dehydration mechanism of caoxite [Ca(C2O4)·3H2O]. Mineralogical Magazine, 69(1), 77–88.CrossRefGoogle Scholar
  19. Fraser, I., Meier-Augenstein, W., & Kalin, R. M. (2006). The role of stable isotopes in human identification: A longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Communications in Mass Spectrometry, 20(7), 1109–1116.CrossRefGoogle Scholar
  20. Giannossi, M. L., Mongelli, G., Tateo, F., & Summa, V. (2012). Mineralogical and morphological investigation of kidney stones of a Mediterranean region (Basilicata, Italy). Journal of X-Ray Science and Technology, 20(2), 175–186.Google Scholar
  21. Goonewardena, S. A. S., Nissanka, A. D. N. M., Kumari, M. I. P., Liyanage, M. R. P., & De Silva, B. S. S. (2006). Upper urinary tract stones: A case control study of fluid intake in first-time stone formers. Sri Lanka Journal of Urology, 7, 14–18.Google Scholar
  22. Grases, F., & Llobera, A. (1998). Experimental model to study sedimentary kidney stones. Micron, 29(2), 105–111.CrossRefGoogle Scholar
  23. Hareendra, P. P. G., Hunais, M. M., Suvendiran, S., Palihakkara, S. D., & Abeygunasekera, A. M. (2015). Chemical composition of kidney stones obtained from a cohort of Sri Lankan patients. Sri Lanka Journal of Surgery.  https://doi.org/10.4038/sljs.v33i2.8146.CrossRefGoogle Scholar
  24. Hesse, A. (2009). Urinary stones. In F. Lang (Ed.), Encyclopedia of molecular mechanisms of disease (pp. 2144–2147). Berlin: Springer.Google Scholar
  25. Hoefs, J., & Armbruster, T. (1978). 13C/12C-Verhältnisse in menschlichen Harnkonkrementen. Naturwissenschaften, 65(11), 586–589.CrossRefGoogle Scholar
  26. Keshavarzi, B., Yavarashayeri, N., Irani, D., Moore, F., Zarasvandi, A., & Salari, M. (2015). Trace elements in urinary stones: A preliminary investigation in Fars Province, Iran. Environmental geochemistry and health, 37(2), 377–389.  https://doi.org/10.1007/s10653-014-9654-z.CrossRefGoogle Scholar
  27. Krouse, H. R., & Levinson, A. A. (1984). Geographical trends of carbon and sulphur isotope abundances in human kidney stones. Geochimica et Cosmochimica Acta, 48(1), 187–191.  https://doi.org/10.1016/0016-7037(84)90360-0.CrossRefGoogle Scholar
  28. Krouse, H. R., Levinson, A. A., Piggott, D., & Ueda, A. (1987). Further stable isotope investigations of human urinary stones: Comparison with other body components. Applied Geochemistry, 2(2), 205–211.CrossRefGoogle Scholar
  29. Levinson, A. A., Luz, B., & Kolodny, Y. (1987). Variations in oxygen isotopic compositions of human teeth and urinary stones. Applied Geochemistry, 2(4), 367–371.  https://doi.org/10.1016/0883-2927(87)90021-7.CrossRefGoogle Scholar
  30. Levinson, A. A., Mino, M. P., Stams, U. K., & Hariharan, A. (1985). The mineralogy of human urinary stones from Calgary, Quito and Honolulu. American Mineralogist, 70, 630–635.Google Scholar
  31. Lin-Vien, D., Colthup, N. B., Fateley, W. G., & Grasselli, G. G. (1991). The handbook of infrared and Raman characteristic frequencies of organic molecules. Boston: Academic Press.Google Scholar
  32. Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48(2), 385–390.  https://doi.org/10.1016/0016-7037(84)90259-X.CrossRefGoogle Scholar
  33. Matsuzaki, S., Matsushita, K., Tanikawa, K., Masuda, A., & Matsunaga, J. (1995). Sequential analysis of recurrent calcium calculi by infrared spectroscopy. International Journal of Urology, 2(4), 235–237.CrossRefGoogle Scholar
  34. Maurice-Estepa, L., Levillain, P., Lacour, B., & Daudon, M. (2000). Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clinica Chimica Acta, 298(1), 1–11.CrossRefGoogle Scholar
  35. Minagawa, M. (1992). Reconstruction of human diet from σ13C and σ15N in contemporary Japanese hair: A stochastic method for estimating multi-source contribution by double isotopic tracers. Applied Geochemistry, 7(2), 145–158.CrossRefGoogle Scholar
  36. Munoz, J. A., & Valiente, M. (2005). Effects of trace metals on the inhibition of calcium oxalate crystallization. Urological Research, 33(4), 267–272.CrossRefGoogle Scholar
  37. Nakamura, K., Schoeller, D. A., Winkler, F. J., & Schmidt, H. L. (1982). Geographical variations in the carbon isotope composition of the diet and hair in contemporary man. Biological Mass Spectrometry, 9(9), 390–394.CrossRefGoogle Scholar
  38. Nardoto, G. B., Silva, S., Kendall, C., Ehleringer, J. R., Chesson, L. A., Ferraz, E. S. B., et al. (2006). Geographical patterns of human diet derived from stable isotope analysis of fingernails. American Journal of Physical Anthropology, 131(1), 137–146.CrossRefGoogle Scholar
  39. Paluszkiewicz, C., Ściesiński, J., & Gałka, M. (1988). Analysis of renal stones by FTIR spectroscopy. Microchimica Acta, 94(1–6), 45–48.  https://doi.org/10.1007/bf01205835.CrossRefGoogle Scholar
  40. Parks, J. H., Worcester, E. M., Coe, F. L., Evan, A. P., & Lingeman, J. E. (2004). Clinical implications of abundant calcium phosphatein routinely analyzed kidney stones. Kidney International, 66(2), 777–785.  https://doi.org/10.1111/j.1523-1755.2004.00803.x.CrossRefGoogle Scholar
  41. Ries, J. B. (2010). Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite–aragonite seas) and its effects on marine biological calcification. Biogeosciences, 7(9), 2795.  https://doi.org/10.5194/bg-7-2795-2010.CrossRefGoogle Scholar
  42. Sekkoum, K., Cheriti, A., Taleb, S., & Belboukhari, N. (2011). FTIR spectroscopic study of human urinary stones from El Bayadh district (Algeria). Arabian Journal of Chemistry, 9(3), 330–334.  https://doi.org/10.1016/j.arabjc.2011.10.010.CrossRefGoogle Scholar
  43. Selvaraju, R., Raja, A., & Thiruppathi, G. (2013). Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 650–657.  https://doi.org/10.1016/j.saa.2013.05.029.CrossRefGoogle Scholar
  44. Sofia, P. G., Ionescu, I., Rodica, G., & Anisoara, P. (2010). The use of infrared spectroscopy in the investigation of urolithiasis. Revista română de medicină de laborator, 18(4/4), 67–77.Google Scholar
  45. Swaddiwudhipong, W., Mahasakpan, P., Limpatanachote, P., & Krintratun, S. (2011). An association between urinary cadmium and urinary stone disease in persons living in cadmium-contaminated villages in northwestern Thailand: A population study. Environmental Research, 111(4), 579–583.  https://doi.org/10.1016/j.envres.2011.01.007.CrossRefGoogle Scholar
  46. Talham, D. R., Backov, R., Benitez, I. O., Sharbaugh, D. M., Whipps, S., & Khan, S. R. (2006). Role of lipids in urinary stones: Studies of calcium oxalate precipitation at phospholipid Langmuir monolayers. Langmuir, 22(6), 2450–2456.  https://doi.org/10.1021/la052503u.CrossRefGoogle Scholar
  47. Tokui, N., Minari, Y., Kusunoki, K., Yoshimura, T., Yamamoto, T., & Minagawa, M. (2000). Evaluation of dietary intake using carbon and nitrogen isotope analysis of human hair of Chinese living in southern part of China. Journal of UOEH, 22(3), 219–228.CrossRefGoogle Scholar
  48. Wandt, M. A. E., & Underhill, L. G. (1988). Covariance biplot analysis of trace element concentrations in urinary stones. BJU International, 61(6), 474–481.CrossRefGoogle Scholar
  49. Wijayarathna, K. S. N., & Abeygunasekera, A. M. (2013). Pathogenesis of nephrolithiasis. Sri Lanka Journal of Surgery, 31(3), 28–32.  https://doi.org/10.1016/j.juro.2012.11.069.CrossRefGoogle Scholar
  50. Wumaner, A., Keremu, A., Wumaier, D., & Wang, Q. (2014). High incidence of urinary stones in Uyghur children may be related to local environmental factors. Journal of pediatric urology, 10(2), 289–293.  https://doi.org/10.1016/j.jpurol.2013.09.002.CrossRefGoogle Scholar
  51. Zarasvandi, A., Carranza, E. J. M., Heidari, M., & Mousapour, E. (2014). Environmental factors of urinary stones mineralogy, Khouzestan Province, Iran. Journal of African Earth Sciences, 97, 368–376.  https://doi.org/10.1016/j.jafrearsci.2014.04.031.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Geology, Faculty of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  2. 2.Urology UnitGeneral Hospital (Teaching) Colombo SouthDehiwelaSri Lanka
  3. 3.GeoZentrum NordbayernUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations