Environmental Geochemistry and Health

, Volume 41, Issue 1, pp 191–210 | Cite as

Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma

  • Qihua Wang
  • Xijin Xu
  • Xiaowei Cong
  • Zhijun Zeng
  • Long Xu
  • Xia HuoEmail author
Original Paper


Asthma, as one of the most common chronic diseases in children and adults, is a consequence of complex gene–environment interactions. Polycyclic aromatic hydrocarbons (PAHs), as a group of widespread environmental organic pollutants, are involved in the development, triggering and pathologic changes of asthma. Various previous studies reported the critical roles of PAHs in immune changes, oxidative stress and environment–gene interactions of asthma. EPHX1 (the gene of epoxide hydrolase 1, an enzyme mediating human PAH metabolism) had a possible association with asthma by influencing PAH metabolism. This review summarized that (1) the roles of PAHs in asthma—work as risk factors; (2) the possible mechanisms involved in PAH-related asthma—through immunologic and oxidative stress changes; (3) the interactions between PAHs and EPHX1 involved in asthma—enzymatic activity of epoxide hydrolase 1, which affected by EPHX1 genotypes/SNPs/diplotypes, could influence human PAH metabolism and people’s vulnerability to PAH exposure. This review provided a better understanding of the above interactions and underlying mechanisms for asthma which help to raise public’s concern on PAH control and develop strategies for individual asthma primary prevention.


Polycyclic aromatic hydrocarbons (PAHs) Asthma Epoxide hydrolase 1 (EPHX1Airway inflammation Oxidative stress 



This study was supported by the National Natural Science Foundation of China (21876065) and the Department of Education of Guangdong Government under the Top-tier University Development Scheme for Research and Control of Infectious Diseases (2016046). We would like to thank Dr. Stanley Lin for his constructive comments and English language editing.


This study was funded by National Natural Science Foundation of China (Grant Number 21876065) and the Department of Education of Guangdong Government Top-tier University Development Scheme for Research and Control of Infectious Diseases (Grant Number 2016046).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Agache, I., Strasser, D. S., Klenk, A., Agache, C., Farine, H., Ciobanu, C., et al. (2016). Serum IL-5 and IL-13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. Allergy, 71(8), 1192–1202.Google Scholar
  2. Akdis, C. A., & Akdis, M. (2015). Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organization Journal, 8(1), 17. Scholar
  3. Al-Daghri, N. M. (2008). Serum polycyclic aromatic hydrocarbons among children with and without asthma: Correlation to environmental and dietary factors. International Journal of Occupational Medicine and Environmental Health, 21(3), 211–217.Google Scholar
  4. Al-Daghri, N. M., Abd-Alrahman, S., Draz, H., Alkharfy, K., Mohammed, A. K., Clerici, M. S., et al. (2014). Increased IL-4 mRNA expression and poly-aromatic hydrocarbon concentrations from children with asthma. BMC Pediatrics, 14(1), 17.Google Scholar
  5. Al-Daghri, N. M., Alokail, M. S., Abd-Alrahman, S. H., Draz, H. M., Yakout, S. M., & Clerici, M. (2013). Polycyclic aromatic hydrocarbon exposure and pediatric asthma in children: a case-control study. Environmental Health, 12, 1. Scholar
  6. Andreadis, A. A., Hazen, S. L., Comhair, S. A., & Erzurum, S. C. (2003). Oxidative and nitrosative events in asthma. Free Radical Biology and Medicine, 35(3), 213–225.Google Scholar
  7. Bakakos, P., Patentalakis, G., & Papi, A. (2016). Vascular biomarkers in asthma and COPD. Current Topics in Medicinal Chemistry, 16(14), 1599–1609.Google Scholar
  8. Beasley, R., Semprini, A., & Mitchell, E. A. (2015). Risk factors for asthma: Is prevention possible? Lancet, 386(9998), 1075–1085.Google Scholar
  9. Bohm, L., Maxeiner, J., Meyer-Martin, H., Reuter, S., Finotto, S., Klein, M., et al. (2015). IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. Journal of Immunology, 194(3), 887–897.Google Scholar
  10. Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., & Monks, T. J. (2000). Role of quinones in toxicology. Chemical Research in Toxicology, 13(3), 135–160.Google Scholar
  11. Burton, A. (2009). Children’s health: Methylation links prenatal PAH exposure to asthma. Environmental Health Perspectives, 117(5), A195.Google Scholar
  12. Chang, C. (2013). Unmet needs in respiratory diseases: “You can’t know where you are going until you know where you have been”—anonymous. Clinical Reviews in Allergy and Immunology, 45(3), 303–313.Google Scholar
  13. Chatzileontiadou, D. S., Parmenopoulou, V., Manta, S., Kantsadi, A. L., Kylindri, P., Griniezaki, M., et al. (2015). Triazole double-headed ribonucleosides as inhibitors of eosinophil derived neurotoxin. Bioorganic Chemistry, 63, 152–165.Google Scholar
  14. Chen, Y., Zhang, J., Zhang, F., Li, F., & Zhou, M. (2017). Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: Occurrence, sources and potential human health risk. Environmental Geochemistry and Health. Scholar
  15. Chinthrajah, R. S., Hernandez, J. D., Boyd, S. D., Galli, S. J., & Nadeau, K. C. (2016). Molecular and cellular mechanisms of food allergy and food tolerance. The Journal of Allergy and Clinical Immunology, 137(4), 984–997.Google Scholar
  16. Chu, S., Zhang, H., Maher, C., McDonald, J. D., Zhang, X., Ho, S. M., et al. (2013). Prenatal and postnatal polycyclic aromatic hydrocarbon exposure, airway hyperreactivity, and Beta-2 adrenergic receptor function in sensitized mouse offspring. Journal of Toxicology, 2013, 603581. Scholar
  17. Ding, J., Li, J., Chen, J., Chen, H., Ouyang, W., Zhang, R., et al. (2006). Effects of polycyclic aromatic hydrocarbons (PAHs) on vascular endothelial growth factor induction through phosphatidylinositol 3-kinase/AP-1-dependent, HIF-1alpha-independent pathway. Journal of Biological Chemistry, 281(14), 9093–9100.Google Scholar
  18. Eng, S. S., & DeFelice, M. L. (2016). The role and immunobiology of eosinophils in the respiratory system: A comprehensive review. Clinical Reviews in Allergy and Immunology, 50(2), 140–158.Google Scholar
  19. European Respiratory Society. (2013). Adult asthma. In European Lung White Book. Accessed September 06, 2017.
  20. Factor, P., Akhmedov, A. T., McDonald, J. D., Qu, A., Wu, J., Jiang, H., et al. (2011). Polycyclic aromatic hydrocarbons impair function of beta2-adrenergic receptors in airway epithelial and smooth muscle cells. American Journal of Respiratory Cell and Molecular Biology, 45(5), 1045–1049.Google Scholar
  21. Feng, X., Lin, J., Su, N., Liu, G., Chen, P., Zhou, X., et al. (2014). Risk factors of bronchial asthma among people aged over 14 years in China. Zhonghua Yi Xue Za Zhi, 94(16), 1209–1214.Google Scholar
  22. Gale, S. L., Noth, E. M., Mann, J., Balmes, J., Hammond, S. K., & Tager, I. B. (2012). Polycyclic aromatic hydrocarbon exposure and wheeze in a cohort of children with asthma in Fresno, CA. Journal of Exposure Science & Environmental Epidemiology, 22(4), 386–392.Google Scholar
  23. Galowitz, S., & Chang, C. (2015). Immunobiology of critical pediatric asthma. Clinical Reviews in Allergy and Immunology, 48(1), 84–96.Google Scholar
  24. Ghosh, R., Rossner, P., Honkova, K., Dostal, M., Sram, R. J., & Hertz-Picciotto, I. (2016). Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes. Environment International, 87, 94–100.Google Scholar
  25. Ghosh, R., Topinka, J., Joad, J. P., Dostal, M., Sram, R. J., & Hertz-Picciotto, I. (2013). Air pollutants, genes and early childhood acute bronchitis. Mutation Research, 749(1–2), 80–86.Google Scholar
  26. Global Asthma Network. (2014). The global asthma report 2014. Accessed August 23, 2017.
  27. Global Initiative for Asthma. (2018a). Global strategy for asthma management and prevention-online appendix—2018 update. Accessed June 01, 2018.
  28. Global Initiative for Asthma. (2018b). Global strategy for asthma management and prevention-updated 2018. Accessed June 01, 2018.
  29. Gosai, H. B., Sachaniya, B. K., Dudhagara, D. R., Rajpara, R. K., & Dave, B. P. (2017). Concentrations, input prediction and probabilistic biological risk assessment of polycyclic aromatic hydrocarbons (PAHs) along Gujarat coastline. Environmental Geochemistry and Health. Scholar
  30. Grainge, C., Thomas, P. S., Mak, J. C., Benton, M. J., Lim, T. K., & Ko, F. W. (2016). Year in review 2015: Asthma and chronic obstructive pulmonary disease. Respirology, 21(4), 765–775.Google Scholar
  31. Guo, F. H., Comhair, S. A. A., Zheng, S., Dweik, R. A., Eissa, N. T., Thomassen, M. J., et al. (2000). Molecular mechanisms of increased nitric oxide (NO) in asthma: Evidence for transcriptional and post-translational regulation of NO synthesis. The Journal of Immunology, 164(11), 5970–5980.Google Scholar
  32. Guo, Y., Huo, X., Wu, K., Liu, J., Zhang, Y., & Xu, X. (2012). Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China. Science of the Total Environment, 427–428, 35–40.Google Scholar
  33. Guo, Y., Wu, K., Huo, X., & Xu, X. (2011). Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal of Environmental Health, 73(9), 22–25.Google Scholar
  34. Harper, R. W., & Zeki, A. A. (2015). Immunobiology of the critical asthma syndrome. Clinical Reviews in Allergy and Immunology, 48(1), 54–65.Google Scholar
  35. Hassett, C., Alcher, L., Sidhu, J. S., & Omieclnskl, C. J. (1994). Human microsomal epoxide hydrolase: Genetic poloymorphism and functional expression in vitro of amino acid variants. Human Molecular Genetics, 3(3), 421–428.Google Scholar
  36. Hehua, Z., Qing, C., Shanyan, G., Qijun, W., & Yuhong, Z. (2017). The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environmental Research, 159, 519–530.Google Scholar
  37. Henkler, F., Stolpmann, K., & Luch, A. (2012). Exposure to polycyclic aromatic hydrocarbons: Bulky DNA adducts and cellular responses. EXS, 101, 107–131.Google Scholar
  38. Hew, K. M., Walker, A. I., Kohli, A., Garcia, M., Syed, A., McDonald-Hyman, C., et al. (2015). Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells. Clinical and Experimental Allergy, 45(1), 238–248.Google Scholar
  39. Hong, C. H., Lee, C. H., Yu, H. S., & Huang, S. K. (2016). Benzopyrene, a major polyaromatic hydrocarbon in smoke fume, mobilizes Langerhans cells and polarizes Th2/17 responses in epicutaneous protein sensitization through the aryl hydrocarbon receptor. International Immunopharmacology, 36, 111–117.Google Scholar
  40. Iarmarcovai, G., Bonassi, S., Botta, A., Baan, R. A., & Orsiere, T. (2008). Genetic polymorphisms and micronucleus formation: A review of the literature. Mutation Research, 658(3), 215–233.Google Scholar
  41. International Programme on Chemical Safety. (1998). No. 202—polycyclic aromatic hydro-carbons, selected non-heterocyclic (1998)—full text [htm]. Accessed September 02, 2017.
  42. Jansen, D. F., Rijcken, B., Schouten, J. P., Kraan, J., Weiss, S. T., Timens, W., et al. (1999). The relationship of skin test positivity, high serum total IgE levels, and peripheral blood eosinophilia to symptomatic and asymptomatic airway hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 159(3), 924–931.Google Scholar
  43. Jedrychowski, W., Galas, A., Pac, A., Flak, E., Camman, D., Rauh, V., et al. (2005). Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. European Journal of Epidemiology, 20(9), 775–782.Google Scholar
  44. Jedrychowski, W. A., Perera, F. P., Majewska, R., Camman, D., Spengler, J. D., Mroz, E., et al. (2014). Separate and joint effects of tranplacental and postnatal inhalatory exposure to polycyclic aromatic hydrocarbons: prospective birth cohort study on wheezing events. Pediatric Pulmonology, 49(2), 162–172.Google Scholar
  45. Jung, K. H., Perzanowski, M., Rundle, A., Moors, K., Yan, B., Chillrud, S. N., et al. (2014). Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environmental Research, 128, 35–41.Google Scholar
  46. Jung, K. H., Yan, B., Moors, K., Chillrud, S. N., Perzanowski, M. S., Whyatt, R. M., et al. (2012). Repeated exposure to polycyclic aromatic hydrocarbons and asthma: effect of seroatopy. Annals of Allergy, Asthma & Immunology, 109(4), 249–254.Google Scholar
  47. Karimi, P., Peters, K. O., Bidad, K., & Strickland, P. T. (2015). Polycyclic aromatic hydrocarbons and childhood asthma. European Journal of Epidemiology, 30(2), 91–101.Google Scholar
  48. Keshavarzifard, M., Moore, F., Keshavarzi, B., & Sharifi, R. (2017). Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. Environmental Geochemistry and Health. Scholar
  49. Kim, S. R., Lee, K. S., Park, S. J., Min, K. H., Choe, Y. H., Moon, H., et al. (2010). Involvement of sirtuin 1 in airway inflammation and hyperresponsiveness of allergic airway disease. The Journal of Allergy and Clinical Immunology, 125(2), 449–460 e414.Google Scholar
  50. Kudo, M., Ishigatsubo, Y., & Aoki, I. (2013). Pathology of asthma. Frontiers in Microbiology, 4, 263. Scholar
  51. Lee, J. U., Kim, J. D., & Park, C. S. (2015). Gene-environment interactions in asthma: Genetic and epigenetic effects. Yonsei Medical Journal, 56(4), 877–886.Google Scholar
  52. Lee, J., Nordestgaard, B. G., & Dahl, M. (2011). EPHX1 polymorphisms, COPD and asthma in 47,000 individuals and in meta-analysis. European Respiratory Journal, 37(1), 18–25.Google Scholar
  53. Li, Z., Romanoff, L., Bartell, S., Pittman, E. N., Trinidad, D. A., McClean, M., et al. (2012). Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chemical Research in Toxicology, 25(7), 1452–1461.Google Scholar
  54. Liu, H., Xu, C., Jiang, Z. Y., & Gu, A. (2016). Association of polycyclic aromatic hydrocarbons and asthma among children 6–19 years: NHANES 2001–2008 and NHANES 2011–2012. Respiratory Medicine, 110, 20–27.Google Scholar
  55. Lubitz, S., Schober, W., Pusch, G., Effner, R., Klopp, N., Behrendt, H., et al. (2010). Polycyclic aromatic hydrocarbons from diesel emissions exert proallergic effects in birch pollen allergic individuals through enhanced mediator release from basophils. Environmental Toxicology, 25(2), 188–197.Google Scholar
  56. Martinez-Giron, R., & Martinez-Torre, C. (2016). Cytolytic degranulation of eosinophils in sputum smears. Diagnostic Cytopathology, 44(3), 220–222.Google Scholar
  57. McCoull, K. D., Rindgen, D., Blair, I. A., & Penning, T. M. (1999). Synthesis and characterization of polycyclic aromatic hydrocarbon o-quinone depurinating N7-guanine adducts. Chemical Research in Toxicology, 12(3), 237–246.Google Scholar
  58. Miller, R. L., Garfinkel, R., Lendor, C., Hoepner, L., Li, Z., Romanoff, L., et al. (2010). Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatric Allergy and Immunology, 21(2 Pt 1), 260–267.Google Scholar
  59. Miller, M., Vuong, C., Garcia, M. F., Rosenthal, P., Das, S., Weng, N., et al. (2018). Does reduced zona pellucida binding protein 2 (ZPBP2) expression on chromosome 17q21 protect against asthma? The Journal of Allergy and Clinical Immunology, 142(2), 706–709.e4.Google Scholar
  60. Modena, B. D., Dazy, K., & White, A. A. (2016). Emerging concepts: mast cell involvement in allergic diseases. Translational Research, 174, 98–121.Google Scholar
  61. Moorman, J. E., Akinbami, L. J., Bailey, C. M., Zahran, H. S., King, M. E., Johnson, C. A., et al. (2012). National surveillance of asthma: United States, 2001–2010. Vital & Health Statistics 3, 35(35), 1–58.Google Scholar
  62. Morgan, R. K., Costello, R. W., Durcan, N., Kingham, P. J., Gleich, G. J., McLean, W. G., et al. (2005). Diverse effects of eosinophil cationic granule proteins on IMR-32 nerve cell signaling and survival. American Journal of Respiratory Cell and Molecular Biology, 33(2), 169–177.Google Scholar
  63. NCBI. (2017). EPHX1 epoxide hydrolase 1, microsomal (xenobiotic) [Homo sapiens (human)]. NCBI. Accessed September 06, 2017.
  64. NCBI (2018a). Reference SNP (refSNP) Cluster Report: rs1051740. NCBI. Accessed August 16, 2018.
  65. NCBI (2018b). Reference SNP (refSNP) Cluster Report: rs2234922. NCBI. Accessed August 16, 2018.
  66. Nel, A. E., Diaz-Sanchez, D., & Li, N. (2001). The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Current Opinion in Pulmonary Medicine, 7(1), 20–26.Google Scholar
  67. Nel, A. E., Diaz-Sanchez, D., Ng, D., Hiura, T., & Saxon, A. (1998). Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. The Journal of Allergy and Clinical Immunology, 102(4 Pt 1), 539–554.Google Scholar
  68. Papi, A., Brightling, C., Pedersen, S. E., & Reddel, H. K. (2018). Asthma. The Lancet, 391, 783–800.Google Scholar
  69. Peluso, M. E., Munnia, A., Srivatanakul, P., Jedpiyawongse, A., Sangrajrang, S., Ceppi, M., et al. (2013). DNA adducts and combinations of multiple lung cancer at-risk alleles in environmentally exposed and smoking subjects. Environmental and Molecular Mutagenesis, 54(6), 375–383.Google Scholar
  70. Ple, C., Fan, Y., Ait Yahia, S., Vorng, H., Everaere, L., Chenivesse, C., et al. (2015). Polycyclic aromatic hydrocarbons reciprocally regulate IL-22 and IL-17 cytokines in peripheral blood mononuclear cells from both healthy and asthmatic subjects. PLoS ONE, 10(4), e0122372. Scholar
  71. Postma, D. S., Weiss, S. T., van den Berge, M., Kerstjens, H. A., & Koppelman, G. H. (2015). Revisiting the Dutch hypothesis. The Journal of Allergy and Clinical Immunology, 136(3), 521–529.Google Scholar
  72. Qu, C., Li, B., Wu, H., Wang, S., & Giesy, J. P. (2015). Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health, 37(3), 587–601.Google Scholar
  73. Ravin, K. A., & Loy, M. (2016). The eosinophil in infection. Clinical Reviews in Allergy and Immunology, 50(2), 214–227.Google Scholar
  74. Ren, Y., Ichinose, T., He, M., Arashidani, K., Yoshida, Y., Yoshida, S., et al. (2014). Aggravation of ovalbumin-induced murine asthma by co-exposure to desert-dust and organic chemicals: An animal model study. Environmental Health, 13, 83. Scholar
  75. Repine, J. E., Bast, A., Lankhorst, I., & Group, T. O. S. S. (1997). Oxidative stress in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 156, 341–357.Google Scholar
  76. Salam, M. T., Lin, P. C., Avol, E. L., Gauderman, W. J., & Gilliland, F. D. (2007). Microsomal epoxide hydrolase, glutathione S-transferase P1, traffic and childhood asthma. Thorax, 62(12), 1050–1057.Google Scholar
  77. Sha, L., Shao, M., Liu, C., Li, S., Li, Z., Luo, Y., et al. (2015). The prevalence of asthma in children: a comparison between the year of 2010 and 2000 in urban China. Zhonghua Jie He He Hu Xi Za Zhi, 38(9), 664–668.Google Scholar
  78. Smargiassi, A., Goldberg, M. S., Wheeler, A. J., Plante, C., Valois, M. F., Mallach, G., et al. (2014). Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environmental Research, 132, 38–45.Google Scholar
  79. Sram, R. J., Binkova, B., Dostal, M., Merkerova-Dostalova, M., Libalova, H., Milcova, A., et al. (2013). Health impact of air pollution to children. International Journal of Hygiene and Environmental Health, 216(5), 533–540.Google Scholar
  80. Stevens, T., Cho, S. H., Linak, W. P., & Gilmour, M. I. (2009). Differential potentiation of allergic lung disease in mice exposed to chemically distinct diesel samples. Toxicological Sciences, 107(2), 522–534.Google Scholar
  81. Stiborova, M., Moserova, M., Cerna, V., Indra, R., Dracinsky, M., Sulc, M., et al. (2014). Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions. Toxicology, 318, 1–12.Google Scholar
  82. Sunyer, J., & Munoz, A. (1996). Concentrations of methacholine for bronchial responsiveness according to symptoms, smoking and immunoglobulin E in a population-based study in Spain. Spanish Group of the European Asthma Study. American Journal of Respiratory and Critical Care Medicine, 153(4 Pt 1), 1273–1279.Google Scholar
  83. Tang, W. Y., Levin, L., Talaska, G., Cheung, Y. Y., Herbstman, J., Tang, D., et al. (2012). Maternal exposure to polycyclic aromatic hydrocarbons and 5’-CpG methylation of interferon-γ in cord white blood cells. Environmental Health Perspectives, 120(8), 1195–1200.Google Scholar
  84. Toldi, G., Molvarec, A., Stenczer, B., Muller, V., Eszes, N., Bohacs, A., et al. (2011). Peripheral T(h)1/T(h)2/T(h)17/regulatory T-cell balance in asthmatic pregnancy. International Immunology, 23(11), 669–677.Google Scholar
  85. Torgerson, D. G., Ampleford, E. J., Chiu, G. Y., Gauderman, W. J., Gignoux, C. R., Graves, P. E., et al. (2011). Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nature Genetics, 43(9), 887–892.Google Scholar
  86. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K., & Spits, H. (2009). Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nature Immunology, 10(8), 864–871.Google Scholar
  87. Tung, K. Y., Tsai, C. H., & Lee, Y. L. (2011). Microsomal epoxide hydroxylase genotypes/diplotypes, traffic air pollution, and childhood asthma. Chest, 139(4), 839–848.Google Scholar
  88. Vaclavikova, R., Hughes, D. J., & Soucek, P. (2015). Microsomal epoxide hydrolase 1 (EPHX1): Gene, structure, function, and role in human disease. Gene, 571(1), 1–8.Google Scholar
  89. van Voorhis, M., Knopp, S., Julliard, W., Fechner, J. H., Zhang, X., Schauer, J. J., et al. (2013). Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor. PLoS ONE, 8(12), e82545. Scholar
  90. Verma, A. H., Bueter, C. L., Rothenberg, M. E., & Deepe, G. S. (2017). Eosinophils subvert host resistance to an intracellular pathogen by instigating non-protective IL-4 in CCR2−/− mice. Mucosal Immunology, 10(1), 194–204.Google Scholar
  91. Wandalsen, G. F., Sole, D., & Bacharier, L. B. (2016). Identification of infants and preschool children at risk for asthma: Predictive scores and biomarkers. Current opinion in Allergy and Clinical Immunology, 16(2), 120–126.Google Scholar
  92. Wang, I. J., & Karmaus, W. J. (2017). Oxidative stress-related genetic variants may modify associations of phthalate exposures with asthma. International Journal of Environmental Research and Public Health, 14(2), 162.Google Scholar
  93. Wang, I. J., Karmaus, W. J., & Yang, C. C. (2017). Polycyclic aromatic hydrocarbons exposure, oxidative stress, and asthma in children. International Archives of Occupational and Environmental Health, 90(3), 297–303.Google Scholar
  94. Wilkerson, E. M., Johansson, M. W., Hebert, A. S., Westphall, M. S., Mathur, S. K., Jarjour, N. N., et al. (2016). The peripheral blood eosinophil proteome. Journal of Proteome Research, 15(5), 1524–1533.Google Scholar
  95. World Allergy Organization (2013). WAO white book on allergy 2013 update. Accessed September 06, 2017.
  96. World Health Organization, Regional Office for Europe (2010). WHO guideline for indoorair quality: Selected pollutants. Accessed September 01, 2017.
  97. Xia, G. L., Wang, Y. K., & Huang, Z. Q. (2016). The correlation of serum myeloid-related protein-8/14 and eosinophil cationic protein in patients with coronary artery disease. BioMed Research International, 2016, 4980251. Scholar
  98. Xiang, M., Ao, L., Yang, H., Liu, W., Sun, L., Han, X., et al. (2012). Chromosomal damage and polymorphisms of metabolic genes among 1, 3-butadiene-exposed workers in a matched study in China. Mutagenesis, 27(4), 415–421.Google Scholar
  99. Xu, H., Guinot, B., Ho, S. S. H., Li, Y., Cao, J., Shen, Z., et al. (2017). Evaluation on exposures to particulate matter at a junior secondary school: A comprehensive study on health risks and effective inflammatory responses in Northwestern China. Environmental Geochemistry and Health. Scholar
  100. Xu, X., Liu, J., Huang, C., Lu, F., Chiung, Y. M., & Huo, X. (2015). Association of polycyclic aromatic hydrocarbons (PAHs) and lead co-exposure with child physical growth and development in an e-waste recycling town. Chemosphere, 139, 295–302.Google Scholar
  101. Zakharenko, A. M., Engin, A. B., Chernyshev, V. V., Chaika, V. V., Ugay, S. M., Rezaee, R., et al. (2017). Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure. Environmental Research, 152, 308–314.Google Scholar
  102. Zhang, S., Li, G., Tian, L., Guo, Q., & Pan, X. (2016). Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: A systematic review and meta-analysis. Environmental Research, 148, 15–23.Google Scholar
  103. Zhou, Y., Sun, H., Xie, J., Song, Y., Liu, Y., Huang, X., et al. (2016). Urinary polycyclic aromatic hydrocarbon metabolites and altered lung function in Wuhan, China. American Journal of Respiratory and Critical Care Medicine, 193(8), 835–846.Google Scholar
  104. Zhou, Y., Tung, H. Y., Tsai, Y. M., Hsu, S. C., Chang, H. W., Kawasaki, H., et al. (2013). Aryl hydrocarbon receptor controls murine mast cell homeostasis. Blood, 121(16), 3195–3204.Google Scholar
  105. Zuo, L., Otenbaker, N. P., Rose, B. A., & Salisbury, K. S. (2013). Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Molecular Immunology, 56(1–2), 57–63.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
  2. 2.Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
  3. 3.Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of EnvironmentJinan UniversityGuangzhouChina

Personalised recommendations