Advertisement

Polycyclic aromatic hydrocarbons (PAHs) in agricultural soils from Ningde, China: levels, sources, and human health risk assessment

  • Huang Zheng
  • Chengkai Qu
  • Jiaquan Zhang
  • Shakeel Ahmed Talpur
  • Yang Ding
  • Xinli Xing
  • Shihua Qi
Original Paper

Abstract

Soil-bound polycyclic aromatic hydrocarbons (PAHs) in farmland are critical to human health. The level, composition, source, and cancer risk of sixteen PAHs in agricultural soil from Ningde, China, were investigated. The results indicated that the total concentrations of 16 PAHs ranged from 77.3 to 1188 ng g−1, with a mean value of 406 ng g−1. Five-ring PAHs were found to have the highest concentrations (148 ± 133 ng g−1), followed by four-ring (120 ± 101 ng g−1), three-ring (61.9 ± 54.2 ng g−1), six-ring (44.6 ± 61.0 ng g−1), and two-ring (31.3 ± 31.0 ng g−1). Employing positive matrix factorization (PMF), four PAH sources including biomass burning (36.3%), coal combustion (35.5%), traffic emissions (16.4%), and coke source (11.8%) were identified. Incremental lifetime cancer risk (ILCR) results showed that ILCR values ranged from 7.1 × 10−4 to 1.1 × 10−3, which will cause moderate-to-high cancer risk to human health mainly via the soil ingestion and dermal contact exposure pathways. The source-oriented results indicated that coal combustion (32.7%), traffic emission (34.3%), and biomass burning (32.4%) had similar contributions to the total cancer risk. Therefore, more attention should be paid to these pyrolysis-originated sources to protect humanity from the health risk of PAHs.

Keywords

PAHs Arable soil Ningde Incremental lifetime cancer risk Positive matrix factorization 

Notes

Acknowledgements

This study was finically supported by the National Natural Science Foundation of China (Nos. 41073070, 41473095, and 41773124). This study was also financially supported by the Open Research Fund of Joint Innovative Centre for pollution control and the resource utilization technology in mining area, Hubei Polytechnic University (NO. xt201302).

Supplementary material

10653_2018_188_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 68 kb)

References

  1. Agarwal, T., Khillare, P. S., Shridhar, V., & Ray, S. (2009). Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. Journal of Hazardous Materials, 163(2–3), 1033–1039.  https://doi.org/10.1016/j.jhazmat.2008.07.058.CrossRefGoogle Scholar
  2. Bortey-Sam, N., Ikenaka, Y., Nakayama, S. M. M., Akoto, O., Yohannes, Y. B., Baidoo, E., et al. (2014). Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana. Science of the Total Environment, 496, 471–478.  https://doi.org/10.1016/j.scitotenv.2014.07.071.CrossRefGoogle Scholar
  3. Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., Petit, J.-E., Nicolas, J. B., et al. (2014). Sources and geographical origins of fine aerosols in Paris (France). Atmospheric Chemistry and Physics, 14(16), 8813–8839.  https://doi.org/10.5194/acp-14-8813-2014.CrossRefGoogle Scholar
  4. Cao, H., Chao, S., Qiao, L., Jiang, Y., Zeng, X., & Fan, X. (2017). Urbanization-related changes in soil PAHs and potential health risks of emission sources in a township in Southern Jiangsu, China. Science of the Total Environment, 575, 692–700.  https://doi.org/10.1016/j.scitotenv.2016.09.106.CrossRefGoogle Scholar
  5. CCME. (2008). Canadian soil quality guidelines carcinogenic and other polycyclic aromatic hydrocarbons (PAHs). https://www.mendeley.com/research-papers/canadian-soil-quality-guidelines-carcinogenic-other-polycyclic-aromatic-hydrocarbons-pahs. Accessed 19 August 2017.
  6. Chai, C., Cheng, Q., Wu, J., Zeng, L., Chen, Q., Zhu, X., et al. (2017). Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. Ecotoxicology and Environmental Safety, 142, 181–188.  https://doi.org/10.1016/j.ecoenv.2017.04.014.CrossRefGoogle Scholar
  7. Chen, M., Huang, P., & Chen, L. (2013). Polycyclic aromatic hydrocarbons in soils from Urumqi, China: Distribution, source contributions, and potential health risks. Environmental Monitoring and Assessment, 185(7), 5639–5651.  https://doi.org/10.1007/s10661-012-2973-6.CrossRefGoogle Scholar
  8. Chen, Y. J., Sheng, G. Y., Bi, X. H., Feng, Y. L., Mai, B. X., & Fu, J. M. (2005). Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environmental Science and Technology, 39(6), 1861–1867.  https://doi.org/10.1021/es0493650.CrossRefGoogle Scholar
  9. Chung, M. K., Hu, R., Cheung, K. C., & Wong, M. H. (2007). Pollutants in Hong Kong soils: Polycyclic aromatic hydrocarbons. Chemosphere, 67(3), 464–473.  https://doi.org/10.1016/j.chemosphere.2006.09.062.CrossRefGoogle Scholar
  10. Dai, J., Li, S., Zhang, Y., Wang, R., & Yu, Y. (2008). Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city, China. Environmental Monitoring and Assessment, 147(1–3), 317–326.  https://doi.org/10.1007/s10661-007-0123-3.CrossRefGoogle Scholar
  11. Desalme, D., Binet, P., & Chiapusio, G. (2013). Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants. Environmental Science and Technology, 47(9), 3967–3981.  https://doi.org/10.1021/es304964b.CrossRefGoogle Scholar
  12. Duan, Y., Shen, G., Tao, S., Hong, J., Chen, Y., Xue, M., et al. (2015). Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. Chemosphere, 127, 64–69.  https://doi.org/10.1016/j.chemosphere.2014.12.075.CrossRefGoogle Scholar
  13. Feng, J., Li, X., Zhao, J., & Sun, J. (2017). Distribution, transfer, and health risks of polycyclic aromatic hydrocarbons (PAHs) in soil-wheat systems of Henan Province, a typical agriculture province of China. Environmental Science and Pollution Research, 24(22), 18195–18203.  https://doi.org/10.1007/s11356-017-9473-8.CrossRefGoogle Scholar
  14. Gope, M., Masto, R. E., George, J., & Balachandran, S. (2018). Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustainable Cities and Society, 38, 616–626.  https://doi.org/10.1016/j.scs.2018.01.006.CrossRefGoogle Scholar
  15. Huang, H., Li, S., Li, X., Yao, J., Cao, W., Wang, M., & Liu, R. (2006). Analysis on the status of organic fertilizer and its development strategies in China. Soil & Fertilizer Sciences in China, 2006(1), 3–8 (in Chinese).Google Scholar
  16. Jenkins, B. M., Jones, A. D., Turn, S. Q., & Williams, R. B. (1996). Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environmental Science and Technology, 30(8), 2462–2469.  https://doi.org/10.1021/es950699m.CrossRefGoogle Scholar
  17. Jia, J., Bi, C., Guo, X., Wang, X., Zhou, X., & Chen, Z. (2017). Characteristics, identification, and potential risk of polycyclic aromatic hydrocarbons in road dusts and agricultural soils from industrial sites in Shanghai, China. Environmental Science and Pollution Research, 24(1), 605–615.  https://doi.org/10.1007/s11356-016-7818-3.CrossRefGoogle Scholar
  18. Jiang, Y.-F., Wang, X.-T., Wang, F., Jia, Y., Wu, M.-H., Sheng, G.-Y., et al. (2009). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere, 75(8), 1112–1118.  https://doi.org/10.1016/j.chemosphere.2009.01.027.CrossRefGoogle Scholar
  19. Khairy, M. A., & Lohmann, R. (2013). Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt. Chemosphere, 91(7), 895–903.  https://doi.org/10.1016/j.chemosphere.2013.02.018.CrossRefGoogle Scholar
  20. Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533–542.  https://doi.org/10.1016/1352-2310(94)00275-P.CrossRefGoogle Scholar
  21. Lang, Y., Li, G., Wang, X., Peng, P., & Bai, J. (2015). Combination of Unmix and positive matrix factorization model identifying contributions to carcinogenicity and mutagenicity for polycyclic aromatic hydrocarbons sources in Liaohe delta reed wetland soils, China. Chemosphere, 120, 431–437.  https://doi.org/10.1016/j.chemosphere.2014.08.048.CrossRefGoogle Scholar
  22. Li, A., Jang, J. K., & Scheff, P. A. (2003). Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environmental Science and Technology, 37(13), 2958–2965.  https://doi.org/10.1021/es026309v.CrossRefGoogle Scholar
  23. Li, G., Lang, Y. H., Yang, W., Peng, P., & Wang, X. M. (2014). Source contributions of PAHs and toxicity in reed wetland soils of Liaohe estuary using a CMB–TEQ method. Science of the Total Environment, 490, 199–204.  https://doi.org/10.1016/j.scitotenv.2014.05.001.CrossRefGoogle Scholar
  24. Liu, Y., Chen, L., Zhao, J., Wei, Y., Pan, Z., Meng, X.-Z., et al. (2010). Polycyclic aromatic hydrocarbons in the surface soil of Shanghai, China: Concentrations, distribution and sources. Organic Geochemistry, 41(4), 355–362.  https://doi.org/10.1016/j.orggeochem.2009.12.009.CrossRefGoogle Scholar
  25. Liu, G., Guo, W., Niu, J., An, X., & Zhao, L. (2017). Polycyclic aromatic hydrocarbons in agricultural soils around the industrial city of Changzhi, China: Characteristics, spatial distribution, hotspots, sources, and potential risks. Journal of Soils and Sediments, 17(1), 229–239.  https://doi.org/10.1007/s11368-016-1490-6.CrossRefGoogle Scholar
  26. Liu, G., Niu, J., Guo, W., An, X., & Zhao, L. (2016). Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China. Chemosphere, 163, 461–470.  https://doi.org/10.1016/j.chemosphere.2016.08.056.CrossRefGoogle Scholar
  27. Liu, G. R., Peng, X., Wang, R. K., Tian, Y. Z., Shi, G. L., Wu, J. H., et al. (2015). A new receptor model-incremental lifetime cancer risk method to quantify the carcinogenic risks associated with sources of particle-bound polycyclic aromatic hydrocarbons from Chengdu in China. Journal of Hazardous Materials, 283, 462–468.  https://doi.org/10.1016/j.jhazmat.2014.09.062.CrossRefGoogle Scholar
  28. Mai, B., Fu, J., Zhang, G., Lin, Z., Min, Y., Sheng, G., et al. (2001). Polycyclic aromatic hydrocarbons in sediments from the Pearl river and estuary, China: spatial and temporal distribution and sources. Applied Geochemistry, 16(11–12), 1429–1445.  https://doi.org/10.1016/S0883-2927(01)00050-6.CrossRefGoogle Scholar
  29. Mai, B., Qi, S., Zeng, E. Y., Fu, J., Sheng, G., Peng, P., et al. (2003). Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis. Environmental Science and Technology, 37(21), 4855–4863.  https://doi.org/10.1021/es034514k.CrossRefGoogle Scholar
  30. Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11(1), 121–127.  https://doi.org/10.1016/0883-2927(95)00076-3.CrossRefGoogle Scholar
  31. Maliszewska-Kordybach, B., Smreczak, B., & Klimkowicz-Pawlas, A. (2009). Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Science of the Total Environment, 407(12), 3746–3753.  https://doi.org/10.1016/j.scitotenv.2009.01.010.CrossRefGoogle Scholar
  32. Man, Y. B., Kang, Y., Wang, H. S., Lau, W., Li, H., Sun, X. L., et al. (2013). Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 261, 770–776.  https://doi.org/10.1016/j.jhazmat.2012.11.067.CrossRefGoogle Scholar
  33. Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Exposure to carcinogenic PAHs in the environment. Environmental Science and Technology, 26(7), 1278–1284.  https://doi.org/10.1021/es00031a002.CrossRefGoogle Scholar
  34. NBSC. (2009). Statistical Yearbook of China 2009. National Bureau of Statistics of China.Google Scholar
  35. Ou, D., Liu, M., Cheng, S., Hou, L., Xu, S., & Wang, L. (2010). Identification of the sources of polycyclic aromatic hydrocarbons based on molecular and isotopic characterization from the Yangtze estuarine and nearby coastal areas. Journal of Geographical Sciences, 20(2), 283–294.  https://doi.org/10.1007/s11442-010-0283-x.CrossRefGoogle Scholar
  36. Peng, C., Chen, W. P., Liao, X. L., Wang, M. E., Ouyang, Z. Y., Jiao, W. T., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159(3), 802–808.  https://doi.org/10.1016/j.envpol.2010.11.003.CrossRefGoogle Scholar
  37. Peng, C., Ouyang, Z., Wang, M., Chen, W., Li, X., & Crittenden, J. C. (2013). Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators. Environmental Pollution, 178, 426–432.  https://doi.org/10.1016/j.envpol.2013.03.058.CrossRefGoogle Scholar
  38. Qu, C., Qi, S., Yang, D., Huang, H., Zhang, J., Chen, W., et al. (2015). Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China. Journal of Geochemical Exploration, 149, 43–51.  https://doi.org/10.1016/j.gexplo.2014.11.002.CrossRefGoogle Scholar
  39. Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33(30), 5071–5079.  https://doi.org/10.1016/S1352-2310(99)00233-2.CrossRefGoogle Scholar
  40. Suman, S., Sinha, A., & Tarafdar, A. (2016). Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of the Total Environment, 545–546, 353–360.  https://doi.org/10.1016/j.scitotenv.2015.12.061.CrossRefGoogle Scholar
  41. Tang, L., Tang, X.-Y., Zhu, Y.-G., Zheng, M.-H., & Miao, Q.-L. (2005). Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International, 31(6), 822–828.  https://doi.org/10.1016/j.envint.2005.05.031.CrossRefGoogle Scholar
  42. Tolosa, I., de Mora, S., Sheikholeslami, M. R., Villeneuve, J.-P., Bartocci, J., & Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal caspian Sea sediments. Marine Pollution Bulletin, 48(1–2), 44–60.  https://doi.org/10.1016/S0025-326X(03)00255-8.CrossRefGoogle Scholar
  43. Tong, R., Yang, X., Su, H., Pan, Y., Zhang, Q., Wang, J., et al. (2018). Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Science of the Total Environment, 616–617, 1365–1373.  https://doi.org/10.1016/j.scitotenv.2017.10.179.CrossRefGoogle Scholar
  44. US EPA. (2014). Positive matrix factorization model for environmental data analyses. Overviews and Factsheets. https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses. Accessed 20 September 2016
  45. VROM. (2000). Ministry of Housing, Spatial Planning and Environment, Circular on Target Values and Intervention Values for Soil Remediation, Spatial Planning and Environment. Netherlands: Ministry of Housing.Google Scholar
  46. Wang, X., Chen, L., Wang, X., Lei, B., Sun, Y., Zhou, J., et al. (2015a). Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China. Chemosphere, 119, 1224–1232.  https://doi.org/10.1016/j.chemosphere.2014.10.019.CrossRefGoogle Scholar
  47. Wang, W., Massey Simonich, S. L., Xue, M., Zhao, J., Zhang, N., Wang, R., et al. (2010). Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environmental Pollution, 158(5), 1245–1251.  https://doi.org/10.1016/j.envpol.2010.01.021.CrossRefGoogle Scholar
  48. Wang, X. T., Miao, Y., Zhang, Y., Li, Y. C., Wu, M. H., & Yu, G. (2013). Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.  https://doi.org/10.1016/j.scitotenv.2012.12.086.CrossRefGoogle Scholar
  49. Wang, C., Wu, S., Zhou, S., Wang, H., Li, B., Chen, H., et al. (2015b). Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Science of the Total Environment, 527–528, 375–383.  https://doi.org/10.1016/j.scitotenv.2015.05.025.CrossRefGoogle Scholar
  50. Xing, X. L., Qi, S. H., Zhang, J. Q., Wu, C. X., Zhang, Y., Yang, D., et al. (2011). Spatial distribution and source diagnosis of polycyclic aromatic hydrocarbons in soils from Chengdu Economic Region, Sichuan Province, western China. Journal of Geochemical Exploration, 110(2), 146–154.  https://doi.org/10.1016/j.gexplo.2011.05.001.CrossRefGoogle Scholar
  51. Yang, B., Xue, N., Zhou, L., Li, F., Cong, X., Han, B., et al. (2012). Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China. Ecotoxicology and Environmental Safety, 84, 304–310.  https://doi.org/10.1016/j.ecoenv.2012.07.027.CrossRefGoogle Scholar
  52. Yang, J., Yu, F., Yu, Y., Zhang, J., Wang, R., Srinivasulu, M., & Vasenev, V. I. (2016). Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in urban soil of Nanjing, China. Journal of Soils and Sediments.  https://doi.org/10.1007/s11368-016-1585-0 CrossRefGoogle Scholar
  53. Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.  https://doi.org/10.1016/S0146-6380(02)00002-5.CrossRefGoogle Scholar
  54. Zhang, Y., Guo, C. S., Xu, J., Tian, Y. Z., Shi, G. L., & Feng, Y. C. (2012). Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Research, 46(9), 3065–3073.  https://doi.org/10.1016/j.watres.2012.03.006.CrossRefGoogle Scholar
  55. Zhao, L., Hou, H., Shangguan, Y., Cheng, B., Xu, Y., Zhao, R., et al. (2014). Occurrence, sources, and potential human health risks of polycyclic aromatic hydrocarbons in agricultural soils of the coal production area surrounding Xinzhou, China. Ecotoxicology and Environmental Safety, 108, 120–128.  https://doi.org/10.1016/j.ecoenv.2014.05.034.CrossRefGoogle Scholar
  56. Zheng, B., Wang, L., Lei, K., & Nan, B. (2016). Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere, 149, 91–100.  https://doi.org/10.1016/j.chemosphere.2016.01.039.CrossRefGoogle Scholar
  57. Zhuo, S., Shen, G., Zhu, Y., Du, W., Pan, X., Li, T., et al. (2017). Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China. Environmental Pollution, 224, 796–809.  https://doi.org/10.1016/j.envpol.2017.01.039.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Huang Zheng
    • 1
  • Chengkai Qu
    • 1
    • 2
  • Jiaquan Zhang
    • 3
  • Shakeel Ahmed Talpur
    • 1
  • Yang Ding
    • 1
  • Xinli Xing
    • 1
  • Shihua Qi
    • 1
  1. 1.State Key Laboratory of Biogeology and Environmental Geology, School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental SciencesNorthwest UniversityXi’anChina
  3. 3.School of Environmental Science and EngineeringHubei Polytechnic UniversityHuangshiChina

Personalised recommendations