Environmental Geochemistry and Health

, Volume 40, Issue 6, pp 2603–2616 | Cite as

Spatiotemporal distribution and dynamic modeling of atmospheric gaseous polycyclic aromatic hydrocarbons in a rapidly urbanizing city: Nanjing, China

  • Baojie Li
  • Shaohua WuEmail author
  • Shenglu ZhouEmail author
  • Teng Wang
  • Chunhui Wang
Original Paper


Multiple studies have evaluated the concentration and lung cancer risk of polycyclic aromatic hydrocarbons (PAHs). However, the monitoring and dynamic modeling of PAHs with a high resolution were relatively insufficient. We investigated the spatiotemporal distribution of gaseous PAH concentrations using passive air samplers with high sampling density in an industrial city of Nanjing, China (January and October 2015) and found that the gaseous PAH concentrations in western Nanjing were higher than those in eastern Nanjing, mainly because of emission source distribution and wind action. There were notable seasonal changes in PAH concentrations: winter > autumn > spring > summer. We developed an atmospheric PAH dynamic model with a high resolution of 1 km2 based on the advection–diffusion equation and coupled with an emissions inventory and atmospheric transportation processes. Acenaphthene was selected as a proxy for gaseous PAHs. The modeled acenaphthene concentrations were similar to the concentrations measured. Moreover, we used the model to identify the impact of meteorological factors on gaseous PAHs via scenario analysis and found that a narrow-range temperature change and even heavy rainfall may not significantly affect atmospheric gaseous PAH concentrations, whereas the wind played an important part in transferring PAHs and changing their geographic distribution.


Polycyclic aromatic hydrocarbons Emission inventory Passive air sampling Atmospheric transport model Meteorological parameters Nanjing 



This work was supported by the National Natural Science Foundation of China [Grant Number 41671085].

Supplementary material

10653_2018_126_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1776 kb)


  1. Amodio, M., Caselli, M., de Gennaro, G., & Tutino, M. (2009). Particulate PAHs in two urban areas of Southern Italy: Impact of the sources, meteorological and background conditions on air quality. Environmental Research, 109(7), 812–820.CrossRefGoogle Scholar
  2. Bamford, H. A., Poster, D. L., & Baker, J. E. (1999). Temperature dependence of Henry’s law constants of thirteen polycyclic aromatic hydrocarbons between 4 C and 31 C. Environmental Toxicology and Chemistry, 18(9), 1905–1912.Google Scholar
  3. Biermann, H. W., Mac Leod, H., Atkinson, R., Winer, A. M., & Pitts, J. N. (1985). Kinetics of the gas-phase reactions of the hydroxyl radical with naphthalene, phenanthrene, and anthracene. Environmental Science & Technology, 19(3), 244–248.CrossRefGoogle Scholar
  4. Brubaker, W. W., & Hites, R. A. (1998). OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. The Journal of Physical Chemistry A, 102(6), 915–921.CrossRefGoogle Scholar
  5. Cao, H., Tao, S., Xu, F., Coveney, R. M., Cao, J., Li, B., et al. (2004). Multimedia fate model for hexachlorocyclohexane in Tianjin, China. Environmental Science & Technology, 38(7), 2126–2132.CrossRefGoogle Scholar
  6. Chang, K.-F., Fang, G.-C., Chen, J.-C., & Wu, Y.-S. (2006). Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environmental Pollution, 142(3), 388–396.CrossRefGoogle Scholar
  7. Chen, Y., Feng, Y., Xiong, S., Liu, D., Wang, G., Sheng, G., et al. (2011). Polycyclic aromatic hydrocarbons in the atmosphere of Shanghai. China. Environmental Monitoring and Assessment, 172(1–4), 235–247.CrossRefGoogle Scholar
  8. Cheng, H., Deng, Z., Chakraborty, P., Liu, D., Zhang, R., Xu, Y., et al. (2013). A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers. Atmospheric Environment, 73, 16–21.CrossRefGoogle Scholar
  9. Cheruiyot, N. K., Lee, W.-J., Mwangi, J. K., Wang, L.-C., Lin, N.-H., Lin, Y.-C., et al. (2015). An Overview: Polycyclic Aromatic Hydrocarbon Emissions from the Stationary and Mobile Sources and in the Ambient Air. Aerosol and Air Quality Research, 15(7), 2730–2762.CrossRefGoogle Scholar
  10. Choi, S. D., Baek, S. Y., & Chang, Y. S. (2007). Influence of a large steel complex on the spatial distribution of volatile polycyclic aromatic hydrocarbons (PAHs) determined by passive air sampling using membrane-enclosed copolymer (MECOP). Atmospheric Environment, 41(29), 6255–6264.CrossRefGoogle Scholar
  11. Choi, S.-D., Kwon, H.-O., Lee, Y.-S., Park, E.-J., & Oh, J.-Y. (2012). Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city. Journal of Hazardous Materials, 241–242, 252–258.CrossRefGoogle Scholar
  12. Cousins, I. T., & Mackay, D. (2001). Strategies for including vegetation compartments in multimedia models. Chemosphere, 44(4), 643–654.CrossRefGoogle Scholar
  13. Eiguren-Fernandez, A., Miguel, A. H., Froines, J. R., Thurairatnam, S., & Avol, E. L. (2004). Seasonal and Spatial Variation of Polycyclic Aromatic Hydrocarbons in Vapor-Phase and PM2.5 in Southern California Urban and Rural Communities. Aerosol Science and Technology, 38(5), 447–455.CrossRefGoogle Scholar
  14. Fang, G.-C., Chang, K.-F., Lu, C., & Bai, H. (2004). Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan. Taichung. Chemosphere, 55(6), 787–796.CrossRefGoogle Scholar
  15. Halsall, C. J., Sweetman, A., Barrie, L. A., & Jones, K. C. (2001). Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmospheric Environment, 35(2), 255–267.CrossRefGoogle Scholar
  16. Hassan, S., & Khoder, M. I. (2012). Gas–particle concentration, distribution, and health risk assessment of polycyclic aromatic hydrocarbons at a traffic area of Giza. Egypt. Environmental Monitoring and Assessment, 184(6), 3593–3612.CrossRefGoogle Scholar
  17. Hong, W., Jia, H., Ma, W. L., Sinha, R. K., Moon, H. B., Nakata, H., et al. (2016). Distribution, fate, inhalation exposure and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in some Asian countries. Environmental Science and Technology, 50(13), 7163–7174.CrossRefGoogle Scholar
  18. JSB, J. S. B. (2002–2016). Statistical yearbook of Jiangsu 2001–2015. China Statistics Press: Beijing, China.Google Scholar
  19. Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.CrossRefGoogle Scholar
  20. Kleerekoper, L., van Esch, M., & Salcedo, T. B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources, Conservation and Recycling, 64, 30–38.CrossRefGoogle Scholar
  21. Lee, C.-C. (2005). Energy consumption and GDP in developing countries: a cointegrated panel analysis. Energy economics, 27(3), 415–427.CrossRefGoogle Scholar
  22. Li, B., Chen, D., Wu, S., Zhou, S., Wang, T., & Chen, H. (2016). Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecological Indicators, 71, 416–427.CrossRefGoogle Scholar
  23. Li, J., Zhang, G., Li, X., Qi, S., Liu, G., & Peng, X. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355(1), 145–155.CrossRefGoogle Scholar
  24. Liaud, C., Schwartz, J. J., Ocampotorres, R., Delhomme, O., & Millet, M. (2016). Temporal variations of atmospheric PAHs in an urban area (Strasbourg, France) by using long-duration high-volume sampling. Polycyclic Aromatic Compounds, 37(2–3), 1–9.Google Scholar
  25. Liu, C., Bennett, D. H., Kastenberg, W. E., McKone, T. E., & Browne, D. (1999). A multimedia, multiple pathway exposure assessment of atrazine: fate, transport and uncertainty analysis. Reliability Engineering & System Safety, 63(2), 169–184.CrossRefGoogle Scholar
  26. Liu, M., Cheng, S. B., Ou, D. N., Hou, L. J., Gao, L., Wang, L. L., et al. (2007a). Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmospheric Environment, 41(38), 8785–8795.CrossRefGoogle Scholar
  27. Liu, S., Tao, S., Liu, W., Dou, H., Liu, Y., Zhao, J., et al. (2008). Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain. Environmental Pollution, 156(3), 651–656.CrossRefGoogle Scholar
  28. Liu, X., Zhang, G., Li, J., Cheng, H.-R., Qi, S.-H., Li, X.-D., et al. (2007b). Polycyclic aromatic hydrocarbons (PAHs) in the air of Chinese cities. Journal of Environmental Monitoring, 9(10), 1092–1098.CrossRefGoogle Scholar
  29. Ma, W. L., Li, Y. F., Qi, H., Sun, D. Z., Liu, L. Y., & Wang, D. G. (2010). Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere, 79(4), 441–447.CrossRefGoogle Scholar
  30. Mackay, D. (2001). Multimedia environmental models: the fugacity approach. Boca Raton: CRC.CrossRefGoogle Scholar
  31. Mao, X., Yu, Z., Ding, Z., Huang, T., Ma, J., Zhang, G., et al. (2015). Sources and potential health risk of gas phase PAHs in Hexi Corridor, Northwest China. Environmental Science and Pollution Research, 23(3), 2603–2612.CrossRefGoogle Scholar
  32. Morgan, M. G., & Henrion, M. (1990). Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
  33. Motelay-Massei, A., Harner, T., Shoeib, M., Diamond, M., Stern, G., & Rosenberg, B. (2005). Using passive air samplers to assess urban–rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environmental Science & Technology, 39(15), 5763–5773.CrossRefGoogle Scholar
  34. NBS, N. B. o. S. (2002–2016). China energy statistical yearbook 2001–2015. China Statistics Press: Beijing, China.Google Scholar
  35. Nsb, N. S. B. (2016). Statistical yearbook of Nanjing 2015. Beijing: China Statistics Press.Google Scholar
  36. Odabasi, M., Cetin, E., & Sofuoglu, A. (2006). Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas-particle partitioning in an urban atmosphere. Atmospheric Environment, 40(34), 6615–6625.CrossRefGoogle Scholar
  37. Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36(17), 2917–2924.CrossRefGoogle Scholar
  38. Primbs, T., Piekarz, A., Wilson, G., Schmedding, D., Higginbotham, C., Field, J., et al. (2008). Influence of Asian and western United States urban areas and fires on the atmospheric transport of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fluorotelomer alcohols in the western United States. Environmental Science & Technology, 42(17), 6385–6391.CrossRefGoogle Scholar
  39. Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2005). Environmental organic chemistry. New York: Wiley.Google Scholar
  40. Shen, H., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G., et al. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, 47(12), 6415–6424.CrossRefGoogle Scholar
  41. Sun, P., Blanchard, P., Brice, K. A., & Hites, R. A. (2006). Trends in polycyclic aromatic hydrocarbon concentrations in the great lakes atmosphere. Environmental Science & Technology, 40(20), 6221–6227.CrossRefGoogle Scholar
  42. Sykorova, B., Kucbel, M., Raclavska, H., Drozdova, J., & Raclavsky, K. (2015). Seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in the air of Moravian–Silesian region, Czech Republic. Environment, energy and applied technology (pp. 367–372). London: Taylor & Francis Group.Google Scholar
  43. Tao, S., Li, B., Zhang, Y. X., & Yuan, H. (2011). Emission of polycyclic aromatic hydrocarbons in China. In B. Xing, N. Senesi & P. M. Huang (Eds.), Biophysico-Chemical Processes of Anthropogenic Organic Compounds in Environmental Systems. Scholar
  44. Tian, C., Ma, J., Liu, L., Jia, H., Xu, D., & Li, Y.-F. (2009). A modeling assessment of association between East Asian summer monsoon and fate/outflow of α-HCH in Northeast Asia. Atmospheric Environment, 43(25), 3891–3901.CrossRefGoogle Scholar
  45. Toose, L., Woodfine, D. G., MacLeod, M., Mackay, D., & Gouin, J. (2004). BETR-world: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic. Environmental Pollution, 128(1), 223–240.CrossRefGoogle Scholar
  46. Tue, N. M., Takahashi, S., Suzuki, G., Isobe, T., Viet, P. H., Kobara, Y., et al. (2013). Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites. Environment International, 51, 160–167.CrossRefGoogle Scholar
  47. USEPA (1999). Compendium method TO-13A, determination of polycyclic aromatic hydrocarbons (PAHs) in ambient air using gas chromatography (GC/MS).Google Scholar
  48. Vasilakos, C., Levi, N., Maggos, T., Hatzianestis, J., Michopoulos, J., & Helmis, C. (2007). Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens. Journal of Hazardous Materials, 140(1–2), 45–51.CrossRefGoogle Scholar
  49. Wang, Y., Li, P.-H., Li, H.-L., Liu, X.-H., & Wang, W.-X. (2010a). PAHs distribution in precipitation at Mount Taishan: China. Identification of sources and meteorological influences. Atmospheric Research, 95(1), 1–7.CrossRefGoogle Scholar
  50. Wang, X. Y., Li, Q. B., Luo, Y. M., Ding, Q., Xi, L. M., Ma, J. M., et al. (2010b). Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. Environmental Monitoring & Assessment, 165(1–4), 295–305.CrossRefGoogle Scholar
  51. Weiya, L., Min, L., Yi, Y., Min, L., Lijun, H., Yingpeng, Y., et al. (2015). Construction of the emission inventory of polycyclic aromatic hydrocarbons of Shanghai and prediction of its emission trend. Resources and Environment in the Yangtze Basin, 24(6), 1003–1011.Google Scholar
  52. Xing, X., Qi, S., Zhang, J., Wu, C., Zhang, Y., Yang, D., et al. (2011). Spatial distribution and source diagnosis of polycyclic aromatic hydrocarbons in soils from Chengdu Economic Region, Sichuan Province, western China. Journal of Geochemical Exploration, 110(2), 146–154.CrossRefGoogle Scholar
  53. Xu, S., Liu, W., & Tao, S. (2006). Emission of polycyclic aromatic hydrocarbons in China. Environmental Science & Technology, 40(3), 702–708.CrossRefGoogle Scholar
  54. Xu, F.-L., Qin, N., Zhu, Y., He, W., Kong, X.-Z., Barbour, M. T., et al. (2013). Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China. Ecological Modelling, 252, 246–257.CrossRefGoogle Scholar
  55. Zhang, Y. (2010). Polycyclic aromatic hydrocarbons in China: emission, atmospheric transport and lung cancer risk. Doctor Thesis. Peking University.Google Scholar
  56. Zhang, Y., Dou, H., Chang, B., Wei, Z., Qiu, W., Liu, S., et al. (2008). Emission of polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory updating in China. Annals of the New York Academy of Sciences, 1140(1), 218–227.CrossRefGoogle Scholar
  57. Zhang, Y., Shen, H., Tao, S., & Ma, J. (2011). Modeling the atmospheric transport and outflow of polycyclic aromatic hydrocarbons emitted from China. Atmospheric Environment, 45(17), 2820–2827.CrossRefGoogle Scholar
  58. Zhang, Y., & Tao, S. (2008). Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Atmospheric Environment, 156(3), 657–663.Google Scholar
  59. Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43(4), 812–819.CrossRefGoogle Scholar
  60. Zhang, Y., Tao, S., Cao, J., & Coveney, R. M. (2007). Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science & Technology, 41(3), 683–687.CrossRefGoogle Scholar
  61. Zhang, J., Yang, L., Mellouki, A., Chen, J., Chen, X., Gao, Y., et al. (2018). Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmospheric Environment, 173, 256–264.CrossRefGoogle Scholar
  62. Zhao, Y., Wang, Q., Yang, L., Li, Z., Satake, K., & Tsunoda, K.-I. (2006). Alternative normalization method of atmospheric polycyclic aromatic hydrocarbons pollution level recorded by tree bark. Environmental Science & Technology, 40(19), 5853–5859.CrossRefGoogle Scholar
  63. Zhu, X., Zhou, C., Henkelmann, B., Wang, Z., Ma, X., Pfister, G., et al. (2013). Monitoring of PAHs profiles in the urban air of Dalian, China with active high-volume sampler and semipermeable membrane devices. Polycyclic Aromatic Compounds, 33(3), 265–288.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of land and urban-rural developmentZhejiang University of Finance & EconomicsHangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Coastal Zone Exploitation and ProtectionMinistry of Land and ResourcesNanjingPeople’s Republic of China
  3. 3.School of Geographic and Oceanographic SciencesNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations