Environmental Geochemistry and Health

, Volume 40, Issue 6, pp 2371–2381 | Cite as

Toxic effects of coal fly ash on wheat seedlings

  • Zhongbin Liao
  • Xin XiaoEmail author
  • Yingying Hu
  • Xiaofei Sun
  • Hui Wang
  • Hongxuan Zhou
  • Yu Ma
  • James Li
Original Paper


We studied heavy metal (HM) stress on wheat seedlings (AK-58) with and without coal fly ash (CFA) exposure. Three CFA spray rates were used to simulate air quality of the second level. Results show airborne particulates can directly enter plant leaves, affecting the whole plant. HM deposition decreases seedling size and mass and reduces activities of the chlorophyll family, photosynthesis enzymes (RuBP and PEPC), and photosynthesis efficiency. In leaves, HM deposition increases with the CFA spray rate. In roots, however, CFA exposure seems to reduce HM deposition, compared with the control without CFA exposure. A possible reason is that HM deposition in leaves from airborne particulates hinders photosynthesis, weakens the whole physiology of the seedlings, and consequently reduces root absorption of HMs from soil. CFA leads to chloroplast expansion, layer-stack disorder of grana, plastoglobule increase, and even chlorophyll membrane damage.


Coal fly ash Heavy metal stress Wheat seedling Chloroplast 



This study was supported by the Fundamental Research Funds of the Central Universities (2017XKQY95) and National Natural Science Foundation of China (41671524).


  1. Blissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23.CrossRefGoogle Scholar
  2. Cao, Z., Yang, Y., Lu, J., & Zhang, C. (2011). Atmospheric particle characterization, distribution, and deposition in Xi’an, Shaanxi Province, Central China. Environmental Pollution, 159(2), 577–584.CrossRefGoogle Scholar
  3. Dahl, O., Nurmesniemi, H., Pöykiö, R., & Watkins, G. (2009). Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Processing Technology, 90(7), 871–878.CrossRefGoogle Scholar
  4. Daud, M. K., Mei, L., Azizullah, A., Dawood, M., Ali, I., Mahmood, Q., et al. (2016). Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environmental Science and Pollution Research, 23(15), 15551–15564.CrossRefGoogle Scholar
  5. Davison, R. L., Natusch, D. F. S., Wallace, J. R., & Evans, C. A. (1974). Trace elements in fly ash. Dependence of concentration on particle size. Environmental Science and Technology, 8(13), 1107–1113.CrossRefGoogle Scholar
  6. Douay, F., Roussel, H., Pruvot, C., & Waterlot, C. (2008). Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood. Environmental Science and Pollution Research, 15(2), 162–169.CrossRefGoogle Scholar
  7. Eichert, T., & Goldbach, H. E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—Further evidence for a stomatal pathway. Physiologia Plantarum, 132(4), 491–502.CrossRefGoogle Scholar
  8. Feng, J., Wang, Y., Zhao, J., Zhu, L., Bian, X., & Zhang, W. (2011). Source attributions of heavy metals in rice plant along highway in Eastern China. 环境科学学报: 英文版, 23(7), 1158–1164.Google Scholar
  9. Gajić, G., Djurdjević, L., Kostić, O., Jarić, S., Mitrović, M., Stevanović, B., et al. (2016). Assessment of the phytoremediation potential and an adaptive response of Festuca rubra L. sown on fly ash deposits: Native grass has a pivotal role in ecorestoration management. Ecological Engineering, 93, 250–261.CrossRefGoogle Scholar
  10. Gould, R. P., & Mansfield, T. A. (1989). The sensitivity of early 20th century cultivars of wheat to air pollution. Environmental Pollution, 56(1), 31–37.CrossRefGoogle Scholar
  11. Hower, J. C., Trimble, A. S., Eble, C. F., Palmer, C. A., & Kolker, A. (1999). Characterization of fly ash from low-sulfur and high-sulfur coal sources: Partitioning of carbon and trace elements with particle size. Energy Sources, 21(6), 511–525.CrossRefGoogle Scholar
  12. Hu, Z., Yang, G., Xiao, W., Li, J., Yang, Y., & Yu, Y. (2014). Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China. Resources, Conservation and Recycling, 86, 1–8.CrossRefGoogle Scholar
  13. Iannone, M. F., Groppa, M. D., de Sousa, M. E., Fernández van Raap, M. B., & Benavides, M. P. (2016). Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environmental and Experimental Botany, 131, 77–88.CrossRefGoogle Scholar
  14. Izquierdo, M., & Querol, X. (2012). Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 94, 54.CrossRefGoogle Scholar
  15. Jones, K. B., Ruppert, L. F., & Swanson, S. M. (2012). Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. International Journal of Coal Geology, 94, 337.CrossRefGoogle Scholar
  16. Klein, S., & Ginzburg, B. (1960). An electron microscopic investigation into the effect of EDTA on plant cell wall. The Journal of Biophysical and Biochemical Cytology, 7(2), 335–338.CrossRefGoogle Scholar
  17. Kobeasy, M. I., El-Beltagi, H. S., El-Shazly, M. A., & Khattab, E. A. H. (2011). Induction of resistance in Arachis hypogaea L. against Peanut mottle virus by nitric oxide and salicylic acid. Physiological and Molecular Plant Pathology, 76(2), 112–118.CrossRefGoogle Scholar
  18. Manisha, H., Suresh Pandian, E., & Pal, A. K. (2016a). Determining the Contribution of nearby power plants to deposited foliar dust: A case study of BTPS, Bokaro. Archives Environmental Contamination Toxicology, 71(4), 485–499.CrossRefGoogle Scholar
  19. Manisha, H., Suresh Pandian, E., & Pal, A. K. (2016b). Determining the contribution of nearby power plants to deposited foliar dust: A case study of BTPS, Bokaro. Archives of Environmental Contamination and Toxicology, 71(4), 485–499.CrossRefGoogle Scholar
  20. Mathur, S., Kalaji, H. M., & Jajoo, A. (2016). Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica, 54(2), 185–192.CrossRefGoogle Scholar
  21. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216.CrossRefGoogle Scholar
  22. Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., et al. (2008). Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. Chemosphere, 72(6), 917–924.CrossRefGoogle Scholar
  23. Ouzounidou, G., Moustakas, M., & Eleftheriou, E. P. (1997). Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 32(2), 154–160.CrossRefGoogle Scholar
  24. Pandey, V. C., & Singh, N. (2010). Impact of fly ash incorporation in soil systems. Agriculture, Ecosystems & Environment, 136(1), 16–27.CrossRefGoogle Scholar
  25. Parmar, P., Kumari, N., & Sharma, V. (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Botanical Studies, 54(1), 1–6.CrossRefGoogle Scholar
  26. Pavlík, M., Pavlíková, D., Zemanová, V., Hnilička, F., Urbanová, V., & Száková, J. (2012). Trace elements present in airborne particulate matter—Stressors of plant metabolism. Ecotoxicology and Environmental Safety, 79, 101–107.CrossRefGoogle Scholar
  27. Pernigotti, D., Belis, C. A., & Spanò, L. (2016). SPECIEUROPE: The European data base for PM source profiles. Atmospheric Pollution Research, 7(2), 307–314.CrossRefGoogle Scholar
  28. Pozzobon, M. T., & Valls, J. F. M. (2000). Cytogeography and variation of stomatal size of Paspalum Glaucescens (Gramineae; Paniceae) in Southern Brazil. Euphytica, 116(3), 251–256.CrossRefGoogle Scholar
  29. Prajapati, S. K., & Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environmental Quality, 37(3), 865.CrossRefGoogle Scholar
  30. Rascio, N., Dalla Vecchia, F., La Rocca, N., Barbato, R., Pagliano, C., Raviolo, M., et al. (2008). Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environmental and Experimental Botany, 62(3), 267–278.CrossRefGoogle Scholar
  31. Romero-Puertas, M. C., RodrÍGuez-Serrano, M., Corpas, F. J., GÓMez, M., Del RÍO, L. A., & Sandalio, L. M. (2004). Cadmium-induced subcellular accumulation of O2 − and H2O2 in pea leaves. Plant, Cell and Environment, 27(9), 1122–1134.CrossRefGoogle Scholar
  32. Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57(11), 2471–2491.CrossRefGoogle Scholar
  33. Schreck, E., Foucault, Y., Sarret, G., Sobanska, S., Cécillon, L., Castrec-Rouelle, M., et al. (2012). Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead. The Science of the Total Environment, 427–428, 253.CrossRefGoogle Scholar
  34. Singh, R. P., & Agrawal, M. (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67(11), 2229–2240.CrossRefGoogle Scholar
  35. Somashekaraiah, B. V., Padmaja, K., & Prasad, A. R. K. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum, 85(1), 85–89.CrossRefGoogle Scholar
  36. Toledo-Ibarra, G. A., Díaz Resendiz, K. J. G., Ventura-Ramón, G. H., Romero-Bañuelos, C. A., Medina-Díaz, I. M., Rojas-García, A. E., et al. (2016). Assessment of pollution of the Boca de Camichin Estuary in Nayarit (Mexico) and its influence on oxidative stress in Crassostrea corteziensis oysters. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 200, 47–55.CrossRefGoogle Scholar
  37. Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science and Technology, 44(3), 1036–1042.CrossRefGoogle Scholar
  38. Xiong, T. T., Austruy, A., Pierart, A., Shahid, M., Schreck, E., Stéphane, E., et al. (2016). Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. 环境科学学报: 英文版, 46(8), 16–27.Google Scholar
  39. Yan, X., Shi, W. Z., Zhao, W. J., & Luo, N. N. (2014). Impact of aerosols and atmospheric particles on plant leaf proteins. Atmospheric Environment, 88, 115–122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zhongbin Liao
    • 1
    • 2
  • Xin Xiao
    • 1
    Email author
  • Yingying Hu
    • 3
  • Xiaofei Sun
    • 1
  • Hui Wang
    • 1
  • Hongxuan Zhou
    • 4
  • Yu Ma
    • 1
  • James Li
    • 5
  1. 1.School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina
  2. 2.Agro-Environmental Protection InstituteMinistry of AgricultureTianjinChina
  3. 3.School of Electrical and Power EngineeringChina University of Mining and TechnologyXuzhouChina
  4. 4.School of Architecture and DesignChina University of Mining and TechnologyXuzhouChina
  5. 5.Department of Civil EngineeringRyerson UniversityTorontoCanada

Personalised recommendations