Advertisement

Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1803–1815 | Cite as

Aluminum fractionation in acidic soils and river sediments in the Upper Mero basin (Galicia, NW Spain)

  • L. Palleiro
  • C. Patinha
  • M. L. Rodríguez-Blanco
  • M. M. Taboada-Castro
  • M. T. Taboada-Castro
Original Paper

Abstract

This study aims to determine aluminum fractions in the fine earth of acidic soils under different land uses (forest, pasture and cultivation) and in the river bed sediments of the headwater of the Mero River in order to identify and quantify Al-bearing phases to assess Al mobility and potential bioavailability (environmental availability) in the monitoring area. Sequential extraction is used to evaluate the Al partitioning into six fractions operationally defined: soluble/exchangeable/specifically adsorbed, bound to manganese oxides, associated with amorphous compounds, aluminum bound to oxidizable organic matter, associated with crystalline iron oxides, and residual fraction (aluminum within the crystal lattices of minerals). The mean concentration of total aluminum (24.01 g kg−1) was similar for the three considered uses. The mean percentage of the aluminum fractions, both in soils and sediments, showed the following order: residual fraction ≫ amorphous compounds ≈ crystalline iron oxides > water-soluble/exchangeable/specifically adsorbed > bound to oxidizable organic matter ≈ Mn oxides. However, in the soils, the amorphous compounds and water-soluble/exchangeable/specifically adsorbed fraction showed considerable differences between some types of uses, the percentage of aluminum linked to amorphous compounds being higher in forest soils (16% of total Al) compared to other uses (mean about 8% of total Al). The highest values of water-soluble/exchangeable/specifically adsorbed Al were also found in forest soils (mean 8.6% of the total Al versus about 4% of pasture and cultivation), which is consistent with the lower pH and higher organic matter content in forest soils. Nevertheless, the potentially bioavailable fraction (sum of the first three fractions) is low, suggesting very low geoavailability of this element in both soils and sediments; hence, the possibility to affect the crops and water quality is minimal.

Keywords

Aluminum fractions Acidic soils Land use Organic matter Bed sediments 

Notes

Acknowledgements

This paper is a contribution to the Projects 10MDS103031 of the Xunta de Galicia and CGL2014-56907-R of the Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, which was funded by the Spanish Ministry of Economy and Competitiveness. The first author is grateful to the University of A Coruña for the scholarship grant at the University of Aveiro, Portugal. M.L. Rodríguez-Blanco has been awarded a post-doctoral research contract (Juan de la Cierva Programme), which was funded by the Spanish Ministry of Economy and Competitiveness.

References

  1. Álvarez, E., Monterroso, C., & Fernández-Marcos, M. L. (2002). Aluminium fractionation in Galicia (NW Spain) forest soil as related to vegetation and parent materials. Forest Ecology and Management, 166(1–3), 193–206.CrossRefGoogle Scholar
  2. Barral, M. T., Arias, M., & Díaz-Fierros, F. (1997). Influencia del hierro y aluminio en el contenido de materia orgánica del suelo. Nova Acta Científica Compostelana, 7, 137–146.Google Scholar
  3. Bi, S. P., Gan, N., Lu, X. C., Ni, H. Y., Lin, H., Wang, X. L., et al. (2003). Evaluation of aluminum speciation in surface waters in China and its environmental risk assessment. Environmental Geology, 45, 65–71.CrossRefGoogle Scholar
  4. Blakemore, L. C., Searle, P. L., & Daly, B. K. (1981). Soil Bureau laboratory methods: Methods for chemical analysis of soils. New Zealand Soil Bureau, Scientific Report No 10a. Department of Scientific and Industrial Research, Lower Hutt, New Zealand.Google Scholar
  5. Boruvka, L., Mladkova, L., & Drabek, O. (2005). Factors controlling spatial distribution of soil acidification and Al forms in forest soils. Journal of Inorganic Biochemistry, 99(9), 1796–1806.CrossRefGoogle Scholar
  6. Buol, S. W., Sánchez, P. A., Cate, R. B., & Granger, M. A. (1975). Soil fertility capability classification for fertility management. In E. Bornemisza & A. Alvarado (Eds.), Soil management in tropical America (pp. 126–145). Raleigh, NC: North Carolina State Univ.Google Scholar
  7. Cardoso Fonseca, E., & Ferreira da Silva, E. (1998). Application of selective extraction techniques in metal-bearing phases identification: a South European case study. Journal of Geochemical Exploration, 61(1–3), 203–212.CrossRefGoogle Scholar
  8. Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal Environmental Quality, 24(2), 209–226.CrossRefGoogle Scholar
  9. Dai, Q., Ae, N., Suzuki, T., Rajkumar, M., Fukunaga, S., & Fujitake, N. (2011). Assessment of potentially reactive pools of aluminum in Andisols using a five-step sequential extraction procedure. Soil Science and Plant Nutrition, 57(4), 500–507.CrossRefGoogle Scholar
  10. Din, Z. B. (1992). Use of aluminium to normalize heavy-metal data from estuarine and coastal sediments of Straits of Melaka. Marine Pollution Bulletin, 24(10), 484–491.CrossRefGoogle Scholar
  11. Driscoll, C. T., & Schecher, W. D. (1990). The chemistry of aluminum in the environment. Environmental Geochemistry and Health, 12(1), 28–49.CrossRefGoogle Scholar
  12. Eimil-Fraga, C., Álvarez-Rodríguez, E., Rodríguez-Soalleiro, R., & Fernández-Sanjurjo, M. J. (2015). Influence of parent material on the aluminium fractions in acidic soils under Pinus pinaster in Galicia (NW Spain). Geoderma, 255–256, 50–57.CrossRefGoogle Scholar
  13. Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.CrossRefGoogle Scholar
  14. García-Rodeja, E., Silva, B. M., & Macías, F. (1987). Andosols developed from non-volcanic materials in Galicia, NW Spain. European Journal of Soil Science, 38(4), 573–591.CrossRefGoogle Scholar
  15. Gleyzes, C., Tellier, S., & Michel, A. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends in Analytical Chemistry, 21(6–7), 451–467.CrossRefGoogle Scholar
  16. Guitián, F., & Carballas, T. (1976). Técnicas de análisis de suelos. Santiago de Compostela: Pico Sacro.Google Scholar
  17. Guitián, F., Barral-Silva, M. T., Conde Pumpido Tourón, R., Núñez Cardezo, A., Araujo Nespereira, P., Seara Valero, C., et al. (1992). Atlas Geoquímico de Galicia. Santiago de Compostela: Xunta de Galicia.Google Scholar
  18. Horowitz, A. J., & Elrick, K. A. (1987). The relation of stream sediment surface area, grain size and composition to trace element chemistry. Applied Geochemistry, 2(4), 437–451.CrossRefGoogle Scholar
  19. IGME (Instituto Tecnológico Geominero de España) (1981). Mapa Geológico de España, 1:50,000. Hoja 45. Betanzos. Spain.Google Scholar
  20. IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar
  21. Iyengar, S. S., Zelazny, L. W., & Martens, D. C. (1981). Effect of photolytic oxalate treatment on soil hydroxy-interlayered vermiculites. Clays and Clay Minerals, 29(6), 429–434.CrossRefGoogle Scholar
  22. Jung, M Ch., Thornton, I., & Chon, H. T. (2002). Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu–W mine in Korea. Science of the Total Environment, 295(1–3), 81–89.CrossRefGoogle Scholar
  23. Kaal, J., Costa-Casais, M., Ferro-Vázquez, C., Pontevedra-Pombal, X., & Martínez-Cortizas, A. (2008). Soil formation of “Atlantic rankers” from NW Spain—a high resolution aluminium and iron fractionation study. Pedosphere, 18(4), 441–453.CrossRefGoogle Scholar
  24. Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, FL: CRC Press.Google Scholar
  25. Kamprath, E. J. (1970). Exchangeable aluminum as a criterion for liming leached mineral soils. Soil Science Society of America Proceedings, 34, 252–254.CrossRefGoogle Scholar
  26. Klemmedson, J. O., & Blaser, P. (1990). Effect of high nonexchangeable aluminium on nitrogen and phosphorus availability in a humus-rich acid forest soil. Plant and Soil, 126(2), 277–285.CrossRefGoogle Scholar
  27. Kochian, L. V., Piñeros, M. A., & Hoekenga, O. A. (2005). The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil, 274(1), 175–195.CrossRefGoogle Scholar
  28. Kodama, H., & Schnitzer, M. (1980). Effect of fulvic acid on the crystallization of aluminum hydroxides. Geoderma, 24(3), 195–205.CrossRefGoogle Scholar
  29. Lamb, A. L., Wilson, G. P., & Leng, M. J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Science Reviews, 75(1–4), 29–57.CrossRefGoogle Scholar
  30. Martin, J. M., & Whitfield, M. (1983). The significance of the river input of chemical elements to the ocean. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, & E. D. Goldberg (Eds.), Trace elements in seawater (pp. 265–296). New York, NY: Plenum.Google Scholar
  31. Matús, P., Kubová, J., Bujdos, M., & Medved, J. (2006). Free aluminium extraction from various reference materials and acid soils with relation to plant availability. Talanta, 70(5), 996–1005.CrossRefGoogle Scholar
  32. Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chorover, J., et al. (2009). Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3–4100 kyr), Hawaiian Islands. Geochimica et Cosmochimica Acta, 73(7), 2034–2060.CrossRefGoogle Scholar
  33. Mirza, A., King, A., Troakes, C., & Exley, C. (2017). Aluminium in brain tissue in familial Alzheimer’s disease. Journal of Trace Elements in Medicine and Biology, 40, 30–36.CrossRefGoogle Scholar
  34. Miyazawa, M., Takahashi, T., Sato, T., Kanno, H., & Nanzyo, M. (2013). Factors controlling accumulation and decomposition of organic carbon in humus horizons of Andosols. A case study for distinctive non-allophanic Andosols in northeastern Japan. Biology and Fertility of Soils, 49(7), 929–938.CrossRefGoogle Scholar
  35. Palleiro, L., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2013). The influence of discharge, pH, dissolved organic carbon, and suspended solids on the variability of concentration and partitioning of metals in a rural catchment. Water, Air, and Soil pollution, 224(8), 1651.CrossRefGoogle Scholar
  36. Palleiro, L., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2014a). Hydroclimatic control of sediment and metal export from a rural catchment in northwestern Spain. Hydrololgy and Earth System Sciences, 18, 3663–3673.CrossRefGoogle Scholar
  37. Palleiro, L., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2014b). Hydrological response of a humid agroforestry catchment at different time scales. Hydrological Processess, 28(4), 1677–1688.CrossRefGoogle Scholar
  38. Palleiro, L., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2016). Metal fractionation in topsoils and bed sediments in the Mero River rural basin: Bioavailability and relationship with soil and sediment properties. Catena, 144, 34–44.CrossRefGoogle Scholar
  39. Paterson, E., Clark, L., & Birnie, A. C. (1993). Sequential selective dissolution of iron, aluminium, and silicon from soils. Communications in Soil Science and Plant Analysis, 24(15–16), 2015–2023.CrossRefGoogle Scholar
  40. Pedro, G., & Sieffermann, G. (1979). Weathering of rocks and formation of soils. In F. R. Siegel (Ed.), Review of research of modern problems in geochemistry (pp. 39–55). Paris: Int. Ass. For Geochemistry and Cosmochemistry, UNESCO.Google Scholar
  41. Peech, L., Alexander, L. T., & Dean, L. A. (1947). Methods of soil analysis for soil fertility investigations. USDA cir. no. 757. US Government Printing Office, Washington, DC. Pp. 25.Google Scholar
  42. Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2010). Sediment and phosphorus loss in runoff from an agroforestry catchment, NW Spain. Land Degradation and Development, 21(2), 161–170.CrossRefGoogle Scholar
  43. Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2013). Linking the field to the stream: Soil erosion and sediment yield in a rural catchment, NW Spain. Catena, 102, 74–81.CrossRefGoogle Scholar
  44. Rodríguez-Blanco, M. L., Taboada-Castro, M. M., Taboada-Castro, M. T., & Oropeza-Mota, J. L. (2015). Relating nitrogen export patterns from a mixed land use catchment in NW Spain with rainfall and streamflow. Hydrological Processes, 29(12), 2720–2730.CrossRefGoogle Scholar
  45. Schneider, M. P. W., Scheel, T., Mikutta, R., van Hees, P., Kaiser, K., & Kalbitz, K. (2010). Sorptive stabilization of organic matter by amorphous Al hydroxide. Geochimica et Cosmochimica Acta, 74(5), 1606–1619.CrossRefGoogle Scholar
  46. Schwertmann, U., & Taylor, R. M. (1977). Iron oxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (pp. 145–180). Madison, WI: Soil Science Society of America.Google Scholar
  47. Shuman, L. M. (1982). Separating soil iron- and manganese-oxide fractions for microelement analysis. Soil Science Society of America Journal, 46(5), 1099–1102.CrossRefGoogle Scholar
  48. Singh, S. P., Tack, F. M., & Verloo, M. G. (1998). Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water, Air, and Soil pollution, 102(3), 313–328.CrossRefGoogle Scholar
  49. Soto-Varela, F., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2014). Identifying environmental and geochemical variables governing metal concentrations in a stream draining headwaters in NW Spain. Applied Geochemistry, 44, 61–68.CrossRefGoogle Scholar
  50. Soto-Varela, F., Rodríguez-Blanco, M. L., Taboada-Castro, M. M., & Taboada-Castro, M. T. (2015). Metals discharged during different flow conditions from a mixed agricultural-forest catchment (NW Spain). Hydrological Processes, 29(6), 1644–1655.CrossRefGoogle Scholar
  51. Sposito, G. (2008). The chemistry of soils (2nd ed.). New York, NY: Oxford University Press.Google Scholar
  52. Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.CrossRefGoogle Scholar
  53. Troitiño, F., Gil-Sotres, F., Leirós, M. C., Trasar-Cepeda, C., & Seoane, S. (2008). Effect of land use on some soil properties related to the risk of loss of soil phosphorus. Land Degradation and Development, 19(1), 21–35.CrossRefGoogle Scholar
  54. Urrutia, M. M., García-Rodeja, E., & Macías, F. (1988). Efectividad de las soluciones no tamponadas (KCl, CuCl 2 y LaCl 3 ) en la extracción de aluminio en suelos ricos en materia orgánica. II. Sevilla: Congreso Nacional de la Ciencia del Suelo.Google Scholar
  55. Verde, J. R., Camps Arbestain, M., & Macías, F. (2005). Expression of andic properties in soils from Galicia (NW Spain) under forest and agricultural use. European Journal of Soil Science, 56(1), 53–64.CrossRefGoogle Scholar
  56. Vieira, F. C. B., Bayer, C., Zanatta, J., & Ernani, P. R. (2009). Organic matter kept Al toxicity low in a subtropical no-tillage soil under long-term (21-year) legume-based crop systems and N fertilisation. Australian Journal of Soil Research, 47(7), 707–714.CrossRefGoogle Scholar
  57. Wada, K. (1995). Role of aluminum and iron in the accumulation of organic matter in soils with variable charge. In P. M. Huang, J. Berthelin, J. M. Bollag, W. B. McGill, & A. L. Page (Eds.), Environmental impact of soil component interactions III (pp. 47–58). Boca Raton, FL: CRC Press.Google Scholar
  58. Walna, B., Siepak, J., Drzymała, S., & Sobczyński, T. (2005). Research on aluminium speciation in poor forest soils using the sequential extraction method. Polish Journal of Environmental Studies, 14(2), 243–250.Google Scholar
  59. Wang, L., Butterly, C. R., Tian, W., Herath, M. S. K., Xi, Y., Zhang, J., et al. (2016). Effects of fertilization practices on aluminum fractions and species in a wheat soil. Journal of Soils and Sediments, 16(7), 1933–1943.CrossRefGoogle Scholar
  60. Xu, R. K., Hu, Y. F., Dynes, J. J., Zhao, A. Z., Blyth, R. I. R., Kozak, L. M., et al. (2010). Coordination nature of aluminum (oxy)hydroxides formed under the influence of low molecular weight organic acids and a soil humic acid studied by X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 74(22), 6422–6435.CrossRefGoogle Scholar
  61. Yokel, R. A. (2004). Aluminum. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment, occurrence, analysis and biological relevance (Vol. 2, pp. 635–658). Weinheim: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Centre for Advanced Scientific Research (CICA), Faculty of SciencesUniversity of A CorunaA CoruñaSpain
  2. 2.GEOBIOTEC, Geosciences DepartmentAveiro UniversityAveiroPortugal

Personalised recommendations