Environmental Geochemistry and Health

, Volume 41, Issue 4, pp 1675–1685 | Cite as

Lead sorption characteristics of various chicken bone part-derived chars

  • Jong-Hwan Park
  • Jim J. WangEmail author
  • Seong-Heon Kim
  • Se-Won Kang
  • Ju-Sik Cho
  • Ronald D. Delaune
  • Yong Sik Ok
  • Dong-Cheol SeoEmail author
Original Paper


Recycling food waste for beneficial use is becoming increasingly important in resource-limited economy. In this study, waste chicken bones of different parts from restaurant industry were pyrolyzed at 600 °C and evaluated for char physicochemical properties and Pb sorption characteristics. Lead adsorption isotherms by different chicken bone chars were carried out with initial Pb concentration range of 1–1000 mg L−1 at pH 5. The Pb adsorption data were better described by the Langmuir model (R2 = 0.9289–0.9937; ARE = 22.7–29.3%) than the Freundlich model (R2 = 0.8684–0.9544; ARE = 35.4–72.0%). Among the chars derived from different chicken bone parts, the tibia bone char exhibited the highest maximum Pb adsorption capacity of 263 mg g−1 followed by the pelvis (222 mg g−1), ribs (208 mg g−1), clavicle (179 mg g−1), vertebrae (159 mg g−1), and humerus (135 mg g−1). The Pb adsorption capacities were significantly and positively correlated with the surface area, phosphate release amount, and total phosphorus content of chicken bone chars (r ≥ 0.9711). On the other hand, approximately 75–88% of the adsorbed Pb on the chicken bone chars was desorbable with 0.1 M HCl, indicating their recyclability for reuse. Results demonstrated that chicken bone char could be used as an effective adsorbent for Pb removal in wastewater.


Adsorption and desorption Bone char Chicken bone parts Phosphate release Pyrolysis 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP), [NRF-2017R1A2B4004635], and the Louisiana Agricultural Experiment Station Hatch Project-LAB94152, Louisiana State University, Baton Rouge, LA, USA.

Supplementary material

10653_2017_67_MOESM1_ESM.docx (333 kb)
Supplementary material 1 (DOCX 333 kb)


  1. Abdolali, A., Ngo, H. H., Guo, W., Zhou, J. L., Du, B., Wei, Q., et al. (2015). Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresource Technology, 193, 477–487.CrossRefGoogle Scholar
  2. Adhikari, R., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114, 81–92.CrossRefGoogle Scholar
  3. Adise, S., Gavdanovich, I., & Zellner, D. A. (2015). Looks like chicken: Exploring the law of similarity in evaluation of foods of animal origin and their vegan substitutes. Food Quality and Preference, 41, 52–59.CrossRefGoogle Scholar
  4. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–23.CrossRefGoogle Scholar
  5. Ahn, C. K., Park, D., Woo, S. H., & Park, J. M. (2009). Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. Journal of Hazardous Materials, 164(2–3), 1130–1136.CrossRefGoogle Scholar
  6. Aksu, Z., Gonen, F., & Demircan, Z. (2002). Biosorption of chromium(VI) ions by Mowital®B30H resin immobilized activated sludge in a packed bed: Comparison with granular activated carbon. Process Biochemistry, 38, 175–186.CrossRefGoogle Scholar
  7. Ali, I. (2010). The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Separation and Purification Reviews, 39, 95–171.CrossRefGoogle Scholar
  8. APHA-AWWA-WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.Google Scholar
  9. Bagbi, Y., Sarswat, A., Mohan, D., Pendey, A., & Solanki, P. R. (2016). Lead (Pb2+) adsorption by monodispersed magnetite nanoparticles: Surface analysis and effects of solution chemistry. Journal of Environmental Chemical Engineering, 4, 4237–4247.CrossRefGoogle Scholar
  10. Bohn, H., McNeal, G., & O’connor, G. (1979). Soil chemistry. New York: A Wiley-Interscience Publication.Google Scholar
  11. Boisson, J., Mench, M., Vangronsveld, J., Ruttens, A., Kopponen, P., & DeKoe, T. (1999). Immobilization of trace metals and arsenic by different soil additives: Evaluation by means of chemical extractions. Communications Soil Science and Plant Analysis, 30, 365–387.CrossRefGoogle Scholar
  12. Cao, X., Ma, L. Q., Rhue, D. R., & Appel, C. S. (2004). Mechanisms of lead, copper, and zinc retention by phosphate rock. Environmental Pollution, 131, 435–444.CrossRefGoogle Scholar
  13. Cao, X. D., Wahbi, A., Ma, L. Q., Li, B., & Yang, Y. L. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164, 555–564.CrossRefGoogle Scholar
  14. Çelen, I., Buchanan, J. R., Burns, R. T., Robinson, R. B., & Raman, D. R. (2007). Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Research, 41, 1689–1696.CrossRefGoogle Scholar
  15. Chen, S., Ma, Y., Chen, L., Wang, L., & Guo, H. (2010). Comparison of Pb(II) immobilized by bone char meal and phosphate rock: Characterization and kinetic study. Archives of Environmental Contamination and Toxicology, 58, 24–32.CrossRefGoogle Scholar
  16. Chen, S. B., Zhu, Y. G., Ma, Y. B., & McKay, G. (2006). Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environmental Pollution, 139, 433–439.CrossRefGoogle Scholar
  17. Choy, K. K. H., & McKay, G. (2005). Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere, 60, 1141–1150.CrossRefGoogle Scholar
  18. Cotter-Howells, J., & Caporn, S. (1996). Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry, 11, 335–342.CrossRefGoogle Scholar
  19. Demiral, H., & Güngör, C. (2016). Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production, 124, 103–113.CrossRefGoogle Scholar
  20. Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D., & Mitrić, M. (2009). Comparative study of differently treated animal bones for Co2+ removal. Journal of Hazardous Materials, 164, 279–287.CrossRefGoogle Scholar
  21. Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74.CrossRefGoogle Scholar
  22. Donat, R., Akdogan, A., Erdem, E., & Cetisli, H. (2005). Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science, 286(1), 43–52.CrossRefGoogle Scholar
  23. Eren, E., Afsin, B., & Onal, Y. (2009). Removal of lead ions by acid activated and manganese oxide-coated bentonite. Journal of Hazardous Materials, 161, 677–685.CrossRefGoogle Scholar
  24. Ge, H., Hua, T., & Chen, X. (2016). Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. Journal of Hazardous Materials, 308, 225–232.CrossRefGoogle Scholar
  25. Goff, M. G., Lambers, F. M., Nguyen, T. M., Sung, J., Rimnac, C. M., & Hernandez, C. J. (2015). Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Bone, 79, 8–14.CrossRefGoogle Scholar
  26. Gupta, V. K., Al Hayat, M., Singh, A. K., & Pal, M. K. (2009). Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Analytica Chimica Acta, 634, 36–43.CrossRefGoogle Scholar
  27. Gustafsson, J. P. (2005). Visual MINTEQ, ver 2.32. Royal Institute of Technology, Stockholm, Sweden, Department of Land and Water Resources Engineering.Google Scholar
  28. Hettiarachchi, G. M., Pierzynski, G. M., & Ransom, M. D. (2001). In situ stabilization of soil lead using phosphorus. Journal of Environmental Quality, 30, 1214–1221.CrossRefGoogle Scholar
  29. Hodson, M. E., Valsami-Jones, E., Cotter-Howells, J. D., Dubbin, W. E., Kemp, A. J., & Thornton, I. (2000). Effect of bone meal (calcium phosphate) amendments on metal release from contaminated soils—A leaching column study. Environmental Pollution, 112, 233–243.CrossRefGoogle Scholar
  30. Inyang, M., Gao, B., Pullammanappalili, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.CrossRefGoogle Scholar
  31. Ip, A. W. M., Barford, J. P., & McKay, G. (2009). Reactive black dye adsorption/desorption onto different adsorbents: Effect of salt, surface chemistry, pore size and surface. Journal of Colloid and Interface Science, 337, 32–38.CrossRefGoogle Scholar
  32. Jiang, S., Nguyen, T. A. H., Rudolph, V., Yang, H., Zhang, D., Ok, Y. S., et al. (2017). Characterization of hard- and softwood biochars pyrolyzed at high temperature. Environmental Geochemistry and Health, 39, 403–415.CrossRefGoogle Scholar
  33. Kizilkaya, B., Tekinay, A. A., & Dilgin, Y. (2010). Adsorption and removal of Cu(II) ions from aqueous solution using pretreated fish bones. Desalination, 264(1–2), 37–47.CrossRefGoogle Scholar
  34. Kizilkaya, B., & Tekmay, A. A. (2014). Utilization of removal Pb(II) ions from aqueous environments using waste fish bone by ion exchange. Journal of Chemistry, 2014, 1–12.CrossRefGoogle Scholar
  35. Li, J., Hong, Y., Kim, J. H., Qin, P., Kim, M. J., & Kim, H. Y. (2015). Multiplex PCR for simultaneous identification of turkey, ostrich, chicken, and duck. Applied Biological Chemistry, 58(6), 887–893.Google Scholar
  36. Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.CrossRefGoogle Scholar
  37. Ma, Q. Y., Tralna, S. J., Logan, T. J., & Ryan, J. A. (1994). Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology, 28, 1219–1228.CrossRefGoogle Scholar
  38. Martins, J. I., Orfao, J. J. M., & Soares, O. S. G. P. (2017). Sorption of copper, nickel and cadmium on bone char1. Protection of Metals and Physical Chemistry of Surfaces, 53, 618–627.CrossRefGoogle Scholar
  39. Mielke, H. W., Gonzales, C., Powell, E., & Mielke, P. W., Jr. (2008). Urban soil-lead (Pb) footprint: retrospective comparison of public and private properties in New Orleans. Environmental Geochemistry and Health, 30, 231–242.CrossRefGoogle Scholar
  40. Miretzky, P., & Fernandez-Cirelli, A. (2008). Phosphates for Pb immobilization in soils: A review. Environmental Chemistry Letters, 6, 121–133.CrossRefGoogle Scholar
  41. MOE. (2002). The Korean Standard Test (KST) Methods for Soils (in Korean). Kyunggi: Korean Ministry of Environment.Google Scholar
  42. Moreno-Piraján, J. C., Cómez-Cruz, R., García-Cuello, V. S., & Giraldo, L. (2010). Binary system Cu(II)/Pb(II) adsorption on activated carbon obtained by pyrolysis of cow bone study. Journal of Analytical and Applied Pyrolysis, 89, 122–128.CrossRefGoogle Scholar
  43. Noeline, B. F., Manohar, D. M., & Anirudhan, T. S. (2005). Kinetic and equilibrium modeling of lead(II) sorption from water and wastewater by polymerized banana stem in a batch reactor. Separation and Purification Technology, 4(2), 131–140.CrossRefGoogle Scholar
  44. Ozdes, D., Gundogdu, A., Kemer, B., Duran, C., Senturk, H. B., & Soylak, M. (2009). Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 166, 1480–1487.CrossRefGoogle Scholar
  45. Park, J. H., Ok, Y. S., Kim, S. H., Kang, S. W., Cho, J. S., Heo, J. S., et al. (2015). Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. Applied Biological Chemistry, 58(5), 751–760.Google Scholar
  46. Patinha, C., Reis, A. P., Dias, C., Cachada, A., Adão, R., Martins, H., et al. (2012). Lead availability in soils from Portugal’s Centre Region with special reference to bioaccessibility. Environmental Geochemistry and Health, 34, 213–227.CrossRefGoogle Scholar
  47. Paz-Ferreiro, J., Lu, H., Fu, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth Sciences, 5, 65–75.CrossRefGoogle Scholar
  48. Piccirillo, C., Pereira, S. I. A., Marques, A. P. G. C., Pullar, R. C., Tobaldi, D. M., Pintado, M. E., et al. (2013). Bacteria immobilisation on hydroxyapatite surface for heavy metals removal. Journal of Environmental Management, 121, 87–95.CrossRefGoogle Scholar
  49. Postma, J., Clematis, F., Nijhuis, E. H., & Someus, E. (2013). Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radices lycopersici in tomato. Biological Control, 67, 284–291.CrossRefGoogle Scholar
  50. Qian, T., Zhang, X., Hu, J., & Jiang, H. (2013). Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere, 93, 2069–2075.CrossRefGoogle Scholar
  51. Reynel-Avila, H. E., Mendoza-Castillo, D. I., & Bonilla-Petriciolet, A. (2016). Relevance of anionic dye properties on water decolorization performance using bone char: Adsorption kinetics, isotherm and breakthrough curves. Journal of Molecular Liquids, 219, 425–434.CrossRefGoogle Scholar
  52. Saleh, T. A., Gupta, V. K., & Al-Saadi, A. A. (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. Journal of Colloid and Interface Science, 396, 264–269.CrossRefGoogle Scholar
  53. Sanderson, P., Naidu, R., Bolan, N., Lim, J. E., & Ok, Y. S. (2015). Chemical stabilization of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation. Journal of Hazardous Material, 299, 395–403.CrossRefGoogle Scholar
  54. Siebers, N., Godlinski, F., & Leinweber, P. (2014). Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. Journal of Plant Nutrition and Soil Science, 117, 75–83.CrossRefGoogle Scholar
  55. Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48(6–7), 516–525.CrossRefGoogle Scholar
  56. Smičiklas, I., Dimović, S., Plećaš, I., & Mitrić, M. (2006). Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Research, 40(12), 2267–2274.CrossRefGoogle Scholar
  57. Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study. Environmental Pollution, 144, 816–825.CrossRefGoogle Scholar
  58. Spliethoff, H. M., Mitchell, R. G., Shayler, H., Marquez-Bravo, L. G., Russell-Anelli, J., Ferenz, G., et al. (2016). Estimated lead (Pb) exposures for a population of urban community gardeners. Environmental Geochemistry and Health, 38, 955–971.CrossRefGoogle Scholar
  59. Sun, X. F., Liu, C., Ma, Y., Wang, S. G., Gao, B. Y., & Li, X. M. (2011). Enhanced Cu(II) and Cr(VI) biosorption capacity on poly (ethylenimine) grafted aerobic granular sludge. Colloids and Surfaces B, 82(2), 456–462.CrossRefGoogle Scholar
  60. Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., et al. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Materials Science and Engineering C, 59, 690–701.CrossRefGoogle Scholar
  61. Uchimiya, M., Klasson, K. T., Wartelle, L. H., & Lima, I. M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 82, 1431–1437.CrossRefGoogle Scholar
  62. Udeigwe, T. K., Eze, P. N., Teboh, J. M., & Stietiya, M. H. (2011). Application, chemistry, and environmental implications of contaminant immobilization amendments on agricultural soil and water quality. Environment International, 37, 258–267.CrossRefGoogle Scholar
  63. Volesky, B. (1994). Advanced in biosorption of metals: Selection of biomass types. FEMS Microbiology Reviews, 14, 291–302.CrossRefGoogle Scholar
  64. Xu, X., Cao, X., & Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochar for simultaneously removing heavy metals from aqueous solution: Role of mineral components in biochars. Chemosphere, 92, 955–961.CrossRefGoogle Scholar
  65. Zhang, Y., Jiang, J., & Chen, M. (2008). MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Journal of Environmental Sciences, 20(11), 1398–1402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jong-Hwan Park
    • 1
  • Jim J. Wang
    • 1
    Email author
  • Seong-Heon Kim
    • 2
  • Se-Won Kang
    • 3
  • Ju-Sik Cho
    • 3
  • Ronald D. Delaune
    • 4
  • Yong Sik Ok
    • 5
  • Dong-Cheol Seo
    • 2
    Email author
  1. 1.School of Plant, Environmental, and Soil SciencesLouisiana State University Agricultural CenterBaton RougeUSA
  2. 2.Division of Applied Life Science (BK21 Program) and Institute of Agriculture and Life ScienceGyeongsang National UniversityJinjuSouth Korea
  3. 3.Department of Bio-Environmental SciencesSunchon National UniversitySunchonSouth Korea
  4. 4.Department of Oceanography and Coastal Sciences, College of the Coast and EnvironmentLouisiana State UniversityBaton RougeUSA
  5. 5.O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations