Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH

  • Diana De PadovaEmail author
  • Mouldi Ben Meftah
  • Francesca De Serio
  • Michele Mossa
  • Stefano Sibilla
Original Article


The present paper, places emphasis on the vorticity induced by wave breaking, which greatly contributes to sediments pick up and suspension as well as to air–water exchange at the wave interface, thus deserving a thorough study. A weakly-compressible smoothed particle (WCSPH) model, coupled with a two-equation model for turbulent stresses, has been employed for this scope. A careful calibration of the SPH’s numerical parameters has been first performed, based on experiments carried out in a sloped wave channel, specifically using wave elevation and velocity data. Once proved the reliable performance of the model, the characteristics of vorticity induced just prior and post breaking for both the cases of a spilling and a plunging wave have been numerically studied. The main and detailed results indicate that for both the types of breakers there is a cause-effect relation observed between the stream wise flow deceleration and the vorticity generation.


Smoothed particle hydrodynamics models Spilling breaking Plunging breaking Velocity field Vorticity 



  1. 1.
    Altomare C, Dominguez JM, Crespo AJC, Gonzalez-Cao J, Suzuki T, Gómez-Gesteira M, Troch P (2017) Long-crested wave generation and absorption for SPH-based dualsphysics model. Coast Eng 127:37–54CrossRefGoogle Scholar
  2. 2.
    Altomare C, Tagliafierro B, Dominguez JM, Suzuki T, Viccione G (2018) Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl Ocean Res 2018(81):15–33CrossRefGoogle Scholar
  3. 3.
    Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580CrossRefGoogle Scholar
  4. 4.
    Aristodemo F, Marrone S, Federico I (2015) SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng 105:160–175CrossRefGoogle Scholar
  5. 5.
    Aristodemo F, Tripepi G, Meringolo DD, Veltri P (2017) Solitary wave-induced forces on horizontal circular cylinders: laboratory experiments and SPH simulations. Coast Eng 129:17–35CrossRefGoogle Scholar
  6. 6.
    Basco RD (1985) A qualitative description of wave breaking. J Waterw Port Coast Ocean Eng ASCE 111:171–188CrossRefGoogle Scholar
  7. 7.
    Battjes JA (1988) Surf-zone dynamics. Annu Rev Fluid Mech 20:257–293CrossRefGoogle Scholar
  8. 8.
    Briganti R, Torres-Freyermuth A, Baldock TE, Brocchini M, Dodda N, Hsue TJ, Jiangc Z, Kime Y, Pintado-Patiño JC, Postacchini M (2016) Advances in numerical modelling of swash zone dynamics. Coast Eng 115:26–41CrossRefGoogle Scholar
  9. 9.
    Capone T, Panizzo A, Monaghan JJ (2010) SPH modelling of water waves generated by submarine landslides. J Hydraul Res 48:80–84CrossRefGoogle Scholar
  10. 10.
    Chalikov D, Babanin AV (2012) Simulation of wave breaking in one-dimensional spectral environment. J Phys Oceanogr 42(11):1745–1761CrossRefGoogle Scholar
  11. 11.
    Chang KA, Liu PF (1998) Velocity, acceleration and vorticity under a breaking wave. Phys Fluids 10(1):327–329CrossRefGoogle Scholar
  12. 12.
    Chiapponi M, Cobos MA, Losada S (2017) Longo Cross-shore variability and vorticity dynamics during wave breaking on a fixed bar. Coast Eng 127:119–133CrossRefGoogle Scholar
  13. 13.
    Christensen ED (2006) Large eddy simulation of spilling and plunging breakers. Coast Eng 53:463–485CrossRefGoogle Scholar
  14. 14.
    Dabiri D, Gharib M (1997) Experimental Investigation of the vorticity generation within a spilling water wave. J Fluid Mech 330:113–139CrossRefGoogle Scholar
  15. 15.
    Dalrymple RA, Rogers BD (2006) Numerical modelling of waves with the SPH method. Coast Eng 53:131–147CrossRefGoogle Scholar
  16. 16.
    Dao MH, Xu H, Chan ES, Tkalich P (2013) Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method. Natl Hazards Earth Syst Sci 13(12):3457–3467CrossRefGoogle Scholar
  17. 17.
    De Padova D, Mossa M, Sibilla S, Torti E (2013) 3D SPH modelling of hydraulic jump in a very large channel. J Hydraul Res 51:158–173CrossRefGoogle Scholar
  18. 18.
    De Padova D, Dalrymple RA, Mossa M (2014) Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. J Hydraul Res 52:836–848CrossRefGoogle Scholar
  19. 19.
    De Padova D, Mossa M, Sibilla S (2016) SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker. Environ Fluid Mech 16:267–287CrossRefGoogle Scholar
  20. 20.
    De Padova D, Mossa M, Sibilla S (2017) SPH modelling of hydraulic jump oscillations at an abrupt drop. Water 9(10):790. CrossRefGoogle Scholar
  21. 21.
    De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of characteristics of hydraulic jumps. Environ Fluid Mech. Google Scholar
  22. 22.
    De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop. J Hydrodyn 30:106. CrossRefGoogle Scholar
  23. 23.
    De Padova D, Brocchini M, Buriani F, Corvaro S, De Serio F, Mossa M, Sibilla S (2018) Experimental and numerical investigation of pre-breaking and breaking vorticity within a plunging breaker. Water 10(4):387. CrossRefGoogle Scholar
  24. 24.
    De Serio F, Mossa M (2006) Experimental study on the hydrodynamics of regular breaking waves. Coast Eng 53:99–113CrossRefGoogle Scholar
  25. 25.
    Espa P, Sibilla S, Gallati M (2008) SPH simulations of a vertical 2-D liquid jet introduced from the bottom of a free-surface rectangular tank. Adv Appl Fluid Mech 3:105–140Google Scholar
  26. 26.
    Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B/Fluids 34:35–46CrossRefGoogle Scholar
  27. 27.
    Fulk A, Quinn DW (1995) An analysis of 1-D smoothed particle hydrodynamics kernels. J Comput Phys 126:165–180CrossRefGoogle Scholar
  28. 28.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to nonspherical stars. Mon Not R Astron Soc 181:375–389CrossRefGoogle Scholar
  29. 29.
    Gomez-Gesteira M, Rogers BD, Darlymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27CrossRefGoogle Scholar
  30. 30.
    Grenier N, Touze Le, Colagrossi D, Antuono M, Colicchio G (2013) Viscous bubbly flow simulation with an interface SPH model. Ocean Eng 69:88–102CrossRefGoogle Scholar
  31. 31.
    Hattori M, Aono T (1985) Experimental study on turbulence structures under breaking waves. Coast Eng Jpn 28:97–116CrossRefGoogle Scholar
  32. 32.
    Huang C, Zhang DH, Si YL, Shi YX, Lin YG (2018) Coupled finite particle method for simulations of wave and structure interaction. Coast Eng.
  33. 33.
    Kazakova M, Richard GL (2019) A new model of shoaling and breaking waves: one-dimensional solitary wave on a mild sloping beach. J Fluid Mech 862:552–559CrossRefGoogle Scholar
  34. 34.
    Kazolea M, Ricchiuto M (2018) On wave breaking for Boussinesq-type models. Ocean Modell 123:16–39CrossRefGoogle Scholar
  35. 35.
    Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modelling of wave transformation, breaking. and runup. J Waterway Port Coast Ocean Eng 126:39–47CrossRefGoogle Scholar
  36. 36.
    Kirby JT (2017) Recent advances in nearshore wave, circulation, and sediment transport modelling. J Mar Res 75(3):263–300CrossRefGoogle Scholar
  37. 37.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Meth Eng 3:269–289CrossRefGoogle Scholar
  38. 38.
    Lin J, Rockwell D (1994) Instantaneous structure of a breaking wave. Phys Fluids 6(9):2877–2879CrossRefGoogle Scholar
  39. 39.
    Liu GR, Liu MB (2010) Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76CrossRefGoogle Scholar
  40. 40.
    Longo S (2003) Turbulence under spilling breakers using discrete wavelets. Exp Fluids 43(2):181–191CrossRefGoogle Scholar
  41. 41.
    Longo S (2009) Vorticity and intermittency within the pre-breaking region of spilling breakers. Coast Eng 56:285–296CrossRefGoogle Scholar
  42. 42.
    Longo S, Petti M, Losada IJ (2002) Turbulence in swash and surf zones: a review. Coast Eng 45(3–4):129CrossRefGoogle Scholar
  43. 43.
    Lubin P, Chanson H (2017) Are breaking waves, bores, surges and jumps the same flow? Environ Fluid Mech 17(1):47–77CrossRefGoogle Scholar
  44. 44.
    Makris CV, Memos CD, Krestenitis YN (2016) Numerical modeling of surf zone dynamics under weakly plunging breakers with SPH method. Ocean Modell 98:12–35CrossRefGoogle Scholar
  45. 45.
    Manenti S, Pierobon E, Gallati M, Sibilla S, D’Alpaos L, Macchi EG, Todeschini S (2016) Vajont disaster: smoothed particle hydrodynamics modeling of the post-event 2D experiments. J Hydraul Eng 142(05015007):1–11Google Scholar
  46. 46.
    Meringolo DD, Colagrossi A, Marrone S, Aristodemo F (2017) On the filtering of acoustic components in weakly-compressible SPH simulations. J Fluids Struct 70:1–23CrossRefGoogle Scholar
  47. 47.
    Misra SK, Kirby JT, Brocchini M, Veron F, Thomas M, Kambhamettu C (2008) The mean and turbulent flow structure of a weak hydraulic jump. Phys Fluids 20:03510CrossRefGoogle Scholar
  48. 48.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574CrossRefGoogle Scholar
  49. 49.
    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406CrossRefGoogle Scholar
  50. 50.
    Nadaoka K, Hino M, Koyano Y (1989) Structure of the turbulent flow field under breaking waves in the surf zone. J Fluid Mech 204:359–387CrossRefGoogle Scholar
  51. 51.
    Peregrine DH (1983) Breaking waves on beaches. Annu Rev Fluid Mech 15:149–178CrossRefGoogle Scholar
  52. 52.
    Peregrine DH, Svendsen IA (1978) Spilling breakers, bores and hydraulic jumps. In: Proceedings of the 16th international conference on coastal engineering. ICCE. Hamburg. ASCE, pp 540–550Google Scholar
  53. 53.
    Pugliese Carratelli E, Viccione G, Bovolin V (2016) Free surface flow impact on a vertical wall: a numerical assessment. Theor Comput Fluid Dyn 30(5):403–414CrossRefGoogle Scholar
  54. 54.
    Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408CrossRefGoogle Scholar
  55. 55.
    Sarfaraz M, Pak A (2017) SPH numerical simulation of tsunami wave forces impinged on bridge superstructures. Coast Eng 121:145–157CrossRefGoogle Scholar
  56. 56.
    Shadloo MS, Weiss R, Yildiz M, Dalrymple RA (2015) Numerical simulation of long wave runup for breaking and nonbreaking waves. Int J Offshore Polar Eng 25(1):1–7Google Scholar
  57. 57.
    Sibilla S (2015) An algorithm to improve consistency in Smoothed Particle Hydrodynamics. Comput Fluids 118:148–158CrossRefGoogle Scholar
  58. 58.
    Stansby PK, Feng T (2005) Kinematics and depth-integrated terms in surf zone waves from laboratory measurement. J Fluid Mech 529:279–310CrossRefGoogle Scholar
  59. 59.
    Stive MJF (1980) Velocity and pressure field of spilling breakers. In: Proceeding of the 17th international conference on coastal engineering, Sydney, ASCE, New York, pp 547–566Google Scholar
  60. 60.
    Ting FCK, King JT (1995) Dynamics of surf-zone turbulence in a strong plunging breaker. Coast Eng 24:177–204CrossRefGoogle Scholar
  61. 61.
    Viccione G, Bovolin V, Carratelli EP (2008) 2008 Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations. Int J Numer Meth Fluids 58(6):625–638CrossRefGoogle Scholar
  62. 62.
    Vila JP (1999) On particle weighted methods and smooth particle hydrodynamics. Math Models Methods Appl Sci 9(2):161–209CrossRefGoogle Scholar
  63. 63.
    Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. Oxford University Press, OxfordCrossRefGoogle Scholar
  64. 64.
    Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53:277–304CrossRefGoogle Scholar
  65. 65.
    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396CrossRefGoogle Scholar
  66. 66.
    Zhao Q, Armfield S, Tanimoto K (2004) Numerical simulation of breaking waves by a multi-scale turbulence model. Coast Eng 51:53–80CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Diana De Padova
    • 1
    • 2
    Email author
  • Mouldi Ben Meftah
    • 1
    • 2
  • Francesca De Serio
    • 1
    • 2
  • Michele Mossa
    • 1
    • 2
  • Stefano Sibilla
    • 3
  1. 1.Department of Civil Environmental, Land, Building Engineering and Chemistry (DICATECh)Polytechnic University of BariBariItaly
  2. 2.CoNISMa, National Interuniversity Consortium of Marine SciencesRomeItaly
  3. 3.Department of Civil Engineering and Architecture (DICAr)University of PaviaPaviaItaly

Personalised recommendations