An unusual atmospheric vortex street

  • Dieter Etling
Original Article


Atmospheric vortex streets quite often form in the wake of tall islands in the marine atmospheric boundary layer. Most satellite pictures of this phenomenon show that two rows of staggered, counter-rotating vortices are aligned more or less in a straight line downstream of the islands, like Kármán vortex streets behind cylindrical obstacles. In this paper however, an unusual downstream behaviour of an atmospheric vortex street in the wake of Heard Island is discussed, where there is a sudden change in orientation of the vortices downwind of the island. The reason for this development can be traced to a special synoptic weather situation.


Island wakes Marine boundary layer Vortex street Kármán vortex street 



Images from the NCEP Reanalysis described in “Kalnay, E. and Coauthors, 1996: The NCEP/NCAR Reanalysis 40-year Project. Bull. Amer. Meteor. Soc., 77, 437–471.” are provided by the NOAA/ESRL Physical Sciences Division, Boulder Colorado from their Web site at


  1. 1.
    Birkhoff G, Zarantonella E (1957) Jets, wakes and cavities, vol 2. Academic, New YorkCrossRefGoogle Scholar
  2. 2.
    Chopra KP (1973) Atmospheric and oceanic flow problems introduced by islands. Adv Geophys 16:297–421CrossRefGoogle Scholar
  3. 3.
    Chopra K, Hubert L (1965) Mesoscale eddies in wake of islands. J Atmos Sci 22:652–657.;2 CrossRefGoogle Scholar
  4. 4.
    Couvelard X, Caldeira R, Araujo I, Tomé R (2012) Wind mediated vorticity-generation and eddy confinement, leeward of the Madeira island: 2008 numerical case study. Dyn Atmos Oceans 58:128–149. CrossRefGoogle Scholar
  5. 5.
    Epifanio C, Durran D (2002) Lee-vortex formation in free-slip stratified flow over ridges. Part I: comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J Atmos Sci 59:1153–1165.;2 CrossRefGoogle Scholar
  6. 6.
    Epifanio C, Durran D (2002) Lee-vortex formation in free-slip stratified flow over ridges. Part II: mechanisms of vorticity and PV production in nonlinear viscous wakes. J Atmos Sci 59:1166–1181.;2 CrossRefGoogle Scholar
  7. 7.
    Etling D (1989) On atmospheric vortex streets in the wake of large islands. Meteorol Atmos Phys 41:157–164. CrossRefGoogle Scholar
  8. 8.
    Grubisic V, Sachsperger J, Caldeira RMA (2015) Atmospheric wake of madeira: first aerial observations and numerical simulations. J Atmos Sci 72:4755–4777. CrossRefGoogle Scholar
  9. 9.
    Heinze R, Raasch S, Etling D (2012) The structure of Kármán vortex streets in the atmospheric boundary layer derived from large eddy simulation. Meteorol Z 21:221–237. CrossRefGoogle Scholar
  10. 10.
    Hubert L, Krueger A (1962) Satellite pictures of mesoscale eddies. Mon Weather Rev 90:457–463.;2 CrossRefGoogle Scholar
  11. 11.
    Ito J, Niino H (2016) Atmospheric Kármán vortex shedding from Jeju Island, East China Sea: a numerical study. Mon Weather Rev 144:139–148. CrossRefGoogle Scholar
  12. 12.
    Monkewitz PA (1988) The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys Fluids 31:999–1006. CrossRefGoogle Scholar
  13. 13.
    Nunalee CG, Basu S (2014) On the periodicity of atmospheric von Kármán vortex streets. Environ Fluid Mech 14:1335–1355. CrossRefGoogle Scholar
  14. 14.
    Ponta FL, Aref H (2004) Strouhal–Reynolds number relationship for vortex streets. Phys Rev Lett 93:84501. CrossRefGoogle Scholar
  15. 15.
    Rotunno R, Grubišic V, Smolarkiewicz P (1999) Vorticity and potential vorticity in mountain wakes. J Atmos Sci 56:2796–2810.;2 CrossRefGoogle Scholar
  16. 16.
    Schär C, Durran DR (1997) Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J Atmos Sci 54:534–554.;2 CrossRefGoogle Scholar
  17. 17.
    Schär C, Smith RB (1993) Shallow-water flow past isolated topography. Part I: vorticity production and wake formation. J Atmos Sci 50:1373–1400.;2 CrossRefGoogle Scholar
  18. 18.
    Schär C, Smith RB (1993) Shallow-water flow past isolated topography. Part II: transition to vortex shedding. J Atmos Sci 50:1401–1412.;2 CrossRefGoogle Scholar
  19. 19.
    Scorer RS (1986) Cloud investigation by satellite. Wiley, LondonGoogle Scholar
  20. 20.
    Smolarkiewicz PK, Rotunno R (1989) Low Froude number flow past three-dimensional obstacles. Part 1: baroclinically generated lee vortices. J Atmos Sci 46:1154–1164.;2 CrossRefGoogle Scholar
  21. 21.
    Snyder W, Hunt J, Lee J, Castro I, Lawson R, Eskridge R, Thompson R, Ogawa Y (1985) The structure of strongly stratified flow over hills: dividing-streamline concept. J Fluid Mech 152:249–288. CrossRefGoogle Scholar
  22. 22.
    von Kármán T, Rubach H (1912) Über den Mechanismus des Flüssigkeits und Luftwiderstandes. Z Phys 13:49–59Google Scholar
  23. 23.
    Wille R (1960) Kármán vortex street. Adv Appl Mech 6:273–287. CrossRefGoogle Scholar
  24. 24.
    Young G, Zawislak J (2006) An observational study of vortex spacing in island wake vortex streets. Mon Weather Rev 134:2285–2294. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Meteorology and ClimatologyLeibniz University HannoverHannoverGermany

Personalised recommendations