Advertisement

Environmental Fluid Mechanics

, Volume 11, Issue 4, pp 385–404 | Cite as

Undular tidal bores: effect of channel constriction and bridge piers

  • Hubert ChansonEmail author
Original Article

Abstract

A tidal bore may occur in a macro-tidal estuary when the tidal range exceeds 4.5–6 m and the estuary bathymetry amplifies the tidal wave. Its upstream propagation induces a strong mixing of the estuarine waters. The propagation of undular tidal bores was investigated herein to study the effect of bridge piers on the bore propagation and characteristics. Both the tidal bore profile and the turbulence generated by the bore were recorded. The free-surface undulation profiles exhibited a quasi-periodic shape, and the potential energy of the undulations represented up to 30% of the potential energy of the tidal bore. The presence of the channel constriction had a major impact on the free-surface properties. The undular tidal bore lost nearly one third of its potential energy per surface area as it propagated through the channel constriction. The detailed instantaneous velocity measurements showed a marked effect of the tidal bore passage suggesting the upstream advection of energetic events and vorticity “clouds” behind the bore front in both channel configurations: prismatic and with constriction. The turbulence patches were linked to some secondary motions and the proposed mechanisms were consistent with some field observations in the Daly River tidal bore. The findings emphasise the strong mixing induced by the tidal bore processes, and the impact of bridge structures on the phenomenon.

Keywords

Undular tidal bores Free-surface undulations Channel constriction Bridge piers Experimental measurements Turbulent events Macro-turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10652_2010_9189_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 14 kb)

ESM 2 (MOV 1,148 kb)

ESM 3 (MOV 4,395 kb)

ESM 4 (MOV 2,930 kb)

ESM 5 (MOV 2,686 kb)

References

  1. 1.
    Barré de Saint-Venant AJC (1871) Théorie et Equations Générales du Mouvement Non Permanent des Eaux Courantes. In: Comptes Rendus des séances de l’Académie des Sciences, vol 73, Paris, France, Séance 17 July 1871, pp 147–154 (in French)Google Scholar
  2. 2.
    Bazin H (1865) Recherches Expérimentales sur la Propagation des Ondes. (Experimental Research on Wave Propagation). In: Mémoires présentés par divers savants à l’Académie des Sciences, vol 19, Paris, France, 495–644 (in French)Google Scholar
  3. 3.
    Bradshaw P (1971) An Introduction to Turbulence and its Measurement. Pergamon Press, Oxford, UK, 218 pp (The Commonwealth and International Library of Science and technology Engineering and Liberal Studies, Thermodynamics and Fluid Mechanics Division)Google Scholar
  4. 4.
    Chanson H (2004) The hydraulics of open channel flow: an introduction, 2nd edn. Butterworth-Heinemann, Oxford, UK, p 630Google Scholar
  5. 5.
    Chanson H (2009) An experimental study of tidal bore propagation: the impact of bridge piers and channel constriction. Hydraulic model report no. CH74/09, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 110 pp (5 movies)Google Scholar
  6. 6.
    Chanson H (2009) Applied hydrodynamics: an introduction to ideal and real fluid flows. CRC Press/ Balkema, Taylor & Francis Group, Leiden, The Netherlands, 478 ppGoogle Scholar
  7. 7.
    Chanson H (2010) Unsteady turbulence in tidal bores: effects of bed roughness. J Waterway Port Coastal Ocean Eng ASCE 136(5): 247–256CrossRefGoogle Scholar
  8. 8.
    Chanson H, Tan KK (2011) Turbulent mixing of particles under tidal bores: an experimental analysis. J Hydraul Res, IAHR 49 (in press)Google Scholar
  9. 9.
    Chanson H, Trevethan M, Aoki S (2008) Acoustic doppler velocimetry (ADV) in small estuary : field experience and signal post-processing. Flow Meas Instrum 19(5): 307–313. doi: 10.1016/j.flowmeasinst.2008.03.003 CrossRefGoogle Scholar
  10. 10.
    Chen S (2003) Tidal bore in the north branch of the Changjiang estuary. In: Proceedings of international conference on estuaries & coasts ICEC-2003, vol 1, Hangzhou, China, November 8–11, International Research & Training Center on Erosion & Sedimentation Ed., pp 233–239Google Scholar
  11. 11.
    Chen J, Liu C, Zhang C, Walker HJ (1990) Geomorphological development and sedimentation in Qiantang estuary and Hangzhou bay. J Coastal Res 6(3): 559–572Google Scholar
  12. 12.
    Davies C (1988) Tidal river bores. Dissertation in partial fulfilment of B.A. degree, Department of Geography, Edge Hill College, University of Lancaster, UKGoogle Scholar
  13. 13.
    Dyer KR (1997) Estuaries. A physical introduction, 2nd edn. Wiley, New York, USA, p 195Google Scholar
  14. 14.
    Favre H (1935) Etude Théorique et Expérimentale des Ondes de Translation dans les Canaux Découverts. (Theoretical and experimental study of travelling surges in open channels). Dunod, Paris, France (in French)Google Scholar
  15. 15.
    Furuyama S, Chanson H (2008) A numerical study of open channel flow hydrodynamics and turbulence of the tidal bore and dam-break flows. Report no. CH66/08, Division of Civil Engineering, The University of Queensland, Brisbane, Australia, May, 88 ppGoogle Scholar
  16. 16.
    Goring DG, Nikora VI (2002) Despiking acoustic doppler velocimeter data. J Hydraul Eng ASCE 128(1): 117–126 (discussion: 129(6):484–489)CrossRefGoogle Scholar
  17. 17.
    Henderson FM (1966) Open channel flow. MacMillan Company, New YorkGoogle Scholar
  18. 18.
    Hinze JO (1973) Experimental investigation of secondary currents in the turbulent flow through a straight conduit. Appl Sci Res 28: 453–465Google Scholar
  19. 19.
    Hornung HG, Willert C, Turner S (1995) The flow field downsteam of a hydraulic jump. J Fluid Mech 287: 299–316CrossRefGoogle Scholar
  20. 20.
    Kjerfve B, Ferreira HO (1993) Tidal bores: first ever measurements. Ciência e Cultura (J Brazilian Assoc Adv Sci) 45(2): 135–138Google Scholar
  21. 21.
    Koch C, Chanson H (2008) Turbulent mixing beneath an undular bore front. J Coastal Res 24(4): 999–1007. doi: 10.2112/06-0688.1 CrossRefGoogle Scholar
  22. 22.
    Koch C, Chanson H (2009) Turbulence measurements in positive surges and bores. J Hydraul Res IAHR 47(1): 29–40. doi: 10.3826/jhr.2009.2954 CrossRefGoogle Scholar
  23. 23.
    Madsen PA, Simonsen HJ, Pan CH (2005) Numerical simulation of tidal bores and hydraulic jumps. Coastal Eng 52: 409–433. doi: 10.1016/j.coastaleng.2004.12.007 CrossRefGoogle Scholar
  24. 24.
    Lemoine R (1948) Sur les Ondes Positives de Translation dans les Canaux et sur le Ressaut Ondulé de Faible Amplitude. (On the Positive Surges in Channels and on the Undular Jumps of Low Wave Height.) Jl La Houille Blanche, March–April, pp 183–185 (in French)Google Scholar
  25. 25.
    Liggett JA (1994) Fluid mechanics. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Lubin P, Glockner S, Chanson H (2010) Numerical simulation of a weak breaking tidal bore. Mech Res Commun 37(1): 119–121. doi: 10.1016/j.mechrescom.2009.09.008 CrossRefGoogle Scholar
  27. 27.
    Montes JS, Chanson H (1998) Characteristics of undular hydraulic jumps. Results and calculations. J Hydraul Eng ASCE 124(2): 192–205CrossRefGoogle Scholar
  28. 28.
    Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25: 321–330CrossRefGoogle Scholar
  29. 29.
    Rouse H (1938) Fluid mechanics for hydraulic engineers. McGraw-Hill Publ. New York (also 1961, Dover Publ., New York, 422 pp)Google Scholar
  30. 30.
    Rulifson RA, Tull KA (1999) Striped bass spawning in a tidal bore river: the Shubenacadie estuary, Atlantic Canada. Trans Am Fish Soc 128: 613–624CrossRefGoogle Scholar
  31. 31.
    Tessier B, Terwindt JHJ (1994) An example of soft-sediment deformations in an intertidal environment—the effect of a tidal bore. Comptes-Rendus de l’Académie des Sciences, Série II 319(2, Part 2):217–233 (in French)Google Scholar
  32. 32.
    Thorne CR, Hey RD (1979) Direct measurements of secondary currents at a river inflexion point. Nature 280(19): 226–228CrossRefGoogle Scholar
  33. 33.
    Trevethan M, Chanson H, Brown R (2008) Turbulence characteristics of a small subtropical estuary during and after some moderate rainfall. Estuar Coastal Shelf Sci 79(4): 661–670. doi: 10.1016/j.ecss.2008.06.006 CrossRefGoogle Scholar
  34. 34.
    Wahl TL (2003) Despiking acoustic doppler velocimeter data. Discussion. J Hydural Eng ASCE 129(6): 484–487CrossRefGoogle Scholar
  35. 35.
    Wolanski E, Williams D, Spagnol S, Chanson H (2004) Undular tidal bore dynamics in the Daly estuary, Northern Australia. Estuar Coastal Shelf Sci 60(4): 629–636. doi: 10.1016/j.ecss.2004.03.001 CrossRefGoogle Scholar
  36. 36.
    XIE Q (1998) Turbulent flows in non-uniform open channels: experimental measurements and numerical modelling. Ph.D. thesis, Department of Civil Engineering, University Of Queensland, Australia, 339 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Professor in Civil EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations