Advertisement

Spatiotemporal calibration of atmospheric nitrogen dioxide concentration estimates from an air quality model for Connecticut

  • Owais GilaniEmail author
  • Lisa A. McKay
  • Timothy G. Gregoire
  • Yongtao Guan
  • Brian P. Leaderer
  • Theodore R. Holford
Article

Abstract

A spatiotemporal calibration and resolution refinement model was fitted to calibrate nitrogen dioxide (\(\hbox {NO}_2\)) concentration estimates from the Community Multiscale Air Quality (CMAQ) model, using two sources of observed data on \(\hbox {NO}_2\) that differed in their spatial and temporal resolutions. To refine the spatial resolution of the CMAQ model estimates, we leveraged information using additional local covariates including total traffic volume within 2 km, population density, elevation, and land use characteristics. Predictions from this model greatly improved the bias in the CMAQ estimates, as observed by the much lower mean squared error (MSE) at the \(\hbox {NO}_2\) monitor sites. The final model was used to predict the daily concentration of ambient \(\hbox {NO}_2\) over the entire state of Connecticut on a grid with pixels of size 300 \(\times \) 300 m. A comparison of the prediction map with a similar map for the CMAQ estimates showed marked improvement in the spatial resolution. The effect of local covariates was evident in the finer spatial resolution map, where the contribution of traffic on major highways to ambient \(\hbox {NO}_2\) concentration stands out. An animation was also provided to show the change in the concentration of ambient \(\hbox {NO}_2\) over space and time for 1994 and 1995.

Keywords

Ambient air pollution CMAQ Integrated exposure modeling Kalman filter Resolution refinement SCARR model 

Supplementary material

10651_2019_430_MOESM1_ESM.pdf (413 kb)
Supplementary material 1

References

  1. Alkuwari FA, Guillas S, Wang Y (2013) Statistical downscaling of an air quality model using fitted empirical orthogonal functions. Atmos Environ 81:1–10CrossRefGoogle Scholar
  2. Berrocal VJ, Gelfand AE, Holland DM (2010) A spatio-temporal downscaler for output from numerical models. J Agric Biol Environ Stat 15(2):176–197CrossRefGoogle Scholar
  3. Beyer HL (2012) Geospatial Modeling Environment (Version 0.7.2.1). (software). http://www.spatialecology.com/gme. Accessed 10 Apr 2012
  4. Brown P, Diggle P, Lord M, Young P (2001) Space-time calibration of radar rainfall data. J R Stat Soc Ser C 50(2):221–241CrossRefGoogle Scholar
  5. Byun D, Schere K (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59:51–77CrossRefGoogle Scholar
  6. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM (2006) Measurement error in nonlinear models: a modern perspective. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. Chang HH, Hu X, Liu Y (2014) Calibrating MODIS aerosol optical depth for predicting daily PM\(_{2.5}\) concentrations via statistical downscaling. J Expo Sci Environ Epidemiol 24(4):398–404CrossRefGoogle Scholar
  8. Connecticut Department of Transportation (2001) 2000 Traffic Volumes. State Maintained Highway Network, Bureau of Policy and PlanningGoogle Scholar
  9. Cressie N (1993) Statistics for spatial data: Wiley series in probability and statistics. Wiley, New YorkCrossRefGoogle Scholar
  10. ESRI (2003) StreetMapUSA. Redlands, CA, Environmental Systems Research InstituteGoogle Scholar
  11. Fuentes M, Raftery AE (2005) Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1):36–45CrossRefGoogle Scholar
  12. Gesch D (2007) The national elevation dataset. In: Maune D (ed) Digital elevation model technologies and applications: the DEM users manual. Asprs Publications, BethesdaGoogle Scholar
  13. Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D (2002) The national elevation dataset. Photogramm Eng Remote Sens 68(1):5–11Google Scholar
  14. Gilani O, McKay LA, Gregoire TG, Guan Y, Leaderer BP, Holford TR (2016) Spatiotemporal calibration and resolution refinement of output from deterministic models. Stat Med.  https://doi.org/10.1002/sim.6867 CrossRefPubMedGoogle Scholar
  15. Hogrefe C, Lynn B, Goldberg R, Rosenzweig C, Zalewsky E, Hao W, Doraiswamy P, Civerolo K, Ku JY, Sistla G, Kinney PL (2009) A combined model–observation approach to estimate historic gridded fields of PM\(_{2.5}\) mass and species concentrations. Atmos Environ 43(16):2561–2570CrossRefGoogle Scholar
  16. Holford T, Ebisu K, McKay L, Gent J, Triche E, Bracken M, Leaderer B (2010) Integrated exposure modeling: a model using GIS and GLM. Stat Med 29(1):116–129PubMedPubMedCentralGoogle Scholar
  17. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C (2004) A review and evaluation of intraurban air pollution exposure models. J Expo Sci Environ Epidemiol 15(2):185–204CrossRefGoogle Scholar
  18. Kalman R (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45CrossRefGoogle Scholar
  19. Li B, Eriksson M, Srinivasan R, Sherman M (2008) A geostatistical method for Texas NexRad data calibration. Environmetrics 19(1):1–19CrossRefGoogle Scholar
  20. Massachusetts Department of Transportation - Highway Division (2012) Traffic Volume Counts. http://www.mhd.state.ma.us/default.asp?pgid=content/traffic01&sid=about. Accessed 29 Mar 2013
  21. Meiring W, Sampson P, Guttorp P (1998) Space-time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environ Ecol Stat 5(3):197–222CrossRefGoogle Scholar
  22. New York State Department of Transportation (2012) Department of Transportation - Historic Traffic Data 1977-2011. https://www.dot.ny.gov/divisions/engineering/technical-services/hds-respository/. Accessed 29 Mar 2013
  23. Palmes E, Gunnison A, DiMattio J, Tomczyk C (1976) Personal sampler for nitrogen dioxide. Am Ind Hyg Assoc J 37(10):570–577CrossRefGoogle Scholar
  24. Petris G (2010) An R package for dynamic linear models. J Stat Softw 36(12):1–16CrossRefGoogle Scholar
  25. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/
  26. Skene KJ, Gent JF, McKay LA, Belanger K, Leaderer BP, Holford TR (2010) Modeling effects of traffic and landscape characteristics on ambient nitrogen dioxide levels in Connecticut. Atmos Environ 44(39):5156–5164.  https://doi.org/10.1016/j.atmosenv.2010.08.058. http://www.sciencedirect.com/science/article/B6VH3-511G1YK-9/2/4258d4a4b1934748a7a99324663259f8 CrossRefGoogle Scholar
  27. Triche E, Belanger K, Beckett W, Bracken M, Holford T, Gent J, Jankun T, McSharry J, Leaderer B (2002) Infant respiratory symptoms associated with indoor heating sources. Am J Respir Crit Care Med 166(8):1105–1111CrossRefGoogle Scholar
  28. US Census Bureau (1990) US Census Data 1990. ftp.census.gov/census\(\_\)1990/. Accessed 01 Apr 2013Google Scholar
  29. US Census Bureau (2012) Cartographic Boundary Files - U.S. Census Bureau. http://www.census.gov/geo/www/cob/tr1990.html. Accessed 01 Apr 2013
  30. US Environmental Protection Agency (2008) Integrated Science Assessment for oxides of nitrogen—Health criteria. National Center for Environmental Assessment, Office of Research and Development, Research Triangle Park Durham, NCGoogle Scholar
  31. US Environmental Protection Agency (2011) Technology Transfer Network (TTN) Air Quality System (AQS)—Nitrogen Dioxide. http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm. Accessed 14 Apr 2011
  32. US Environmental Protection Agency (2014) Community Multi-scale Air Quality Model (CMAQ). http://www.epa.gov/amad/Research/RIA/cmaq.html. Accessed 03 Feb 2014
  33. US Geological Survey (2012) USGS National Land Cover Dataset 1992. http://landcover.usgs.gov/natllandcover.php. Accessed 29 Mar 2013
  34. WHO (2003) World Health Organization, Bonn, Germany. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. http://www.euro.who.int/document/e79097.pdf . Accessed 21 Apr 2011

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsBucknell UniversityLewisburgUSA
  2. 2.Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public HealthYale UniversityNew HavenUSA
  3. 3.Yale School of Forestry & Environmental Studies, Yale UniversityNew HavenUSA
  4. 4.Department of Management Science, School of Business AdministrationUniversity of MiamiCoral GablesUSA

Personalised recommendations