Investigating the association between indoor radon concentrations and some potential influencing factors through a profile regression approach

  • Lara Fontanella
  • Luigi Ippoliti
  • Annalina SarraEmail author
  • Eugenia Nissi
  • Sergio Palermi


Radon-222 is a naturally occurring radioactive gas arising from the decay of Uranium-238 present in the earth’s crust. The knowledge of the radon effects on human health is generating a growing attention by national and international authorities aimed at assessing the exposure of people to this radioactive gas and identifying building types and geographic areas where high indoor radon concentrations (IRCs) are likely to be found. However, given its multi-factorial dependence and the substantial regional variation, the analysis of IRC is not a simple task. There have been several efforts to evaluate the impact of the major influencing factors on IRCs. In this paper we illustrate how the complex relationships between the IRCs and a set of associated variables can be analysed using profile regression, a Bayesian non-parametric model for clustering responses and regressors simultaneously. Analyzing a geo-referenced database of annual IRCs for the Abruzzo region (Central Italy), we show that the proposed methodology allows to identify clusters of buildings according to their proneness to IRCs and that, through cluster assignment, it is possible to disentangle the effect of regressors on IRC and predict its levels for specific combinations of the explanatory variables.


Bayesian Profile Regression Building characteristics Cluster profile Indoor radon concentration Lithology 



The authors would like to thank the Editor-in-Chief, the Associate Editor and the referees for their helpful comments and suggestions. LI, LF and EN were partially funded by the grant MIUR, Ministero dell’Istruzione, dell’Università e della Ricerca, PRIN research project 2015 “Environmental processes and human activities: capturing their interactions via statistical methods”-EphaStat. The authors also thank Dr. Roberto Luis Di Cesare of ARTA Abruzzo for making the maps in ArcGis.


  1. Appleton J, Miles JCH, Green BMR, Larmour R (2008) Pilot study of the application of tellus airborne radiometric and soil geochemical data for radon mapping. J Environ Radioact 99(10):1687–1697CrossRefGoogle Scholar
  2. Appleton JD, Miles JCH, Young M (2011) Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data. Sci Total Environ 409(8):1572–1583CrossRefGoogle Scholar
  3. Apte MG, Price PN, Nero AV, Revzan KL (1999) Predicting New Hampshire indoor radon concentrations from geologic information and other covariates. Environ Geol 37:181–194CrossRefGoogle Scholar
  4. Bigelow JL, Dunson DB (2009) Bayesian semiparametric joint models for functional predictors. J Am Stat Assoc 104:26–36CrossRefGoogle Scholar
  5. Blyth CR (1972) On Simpson’s paradox and the sure-thing principle. J Am Stat Assoc 67:364–366CrossRefGoogle Scholar
  6. Borgoni R (2011) A quantile regression approach to evaluate factors influencing residential indoor radon concentration. Environ Model Assess 16:239–250CrossRefGoogle Scholar
  7. Bossew P, Dubois G, Tollefsen T (2008) Investigations on indoor Radon in Austria, part 2: geological classes as categorical external drift for spatial modelling of the Radon potential. J Environ Radioact 99(1):81–97CrossRefGoogle Scholar
  8. Chilés JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New YorkCrossRefGoogle Scholar
  9. Curtis SM, Ghosh SK (2011) A Bayesian approach to multicollinearity and the simultaneous selection and clustering of predictors in linear regression. J Stat Theory Pract 5(4):715–735CrossRefGoogle Scholar
  10. D’Alessandro L, Miccadei E, Piacentini T (2003) Morphostructural elements of central-eastern Abruzzi: contributions to the study of the role of tectonics on the morphogenesis of the Apennine chain. Quat Int 99(1):115–124CrossRefGoogle Scholar
  11. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomàsek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. Br Med J 330(7485):223CrossRefGoogle Scholar
  12. Datta A, Banerjee S, Finley AO, Gelfand AE (2016) Hierarchical nearest neighbor gaussian process models for large geostatistical datasets. J Am Stat Assoc 111:800–812CrossRefGoogle Scholar
  13. Demoury C, Ielsch G, Hemon D, Laurent O, Laurier D, Clavel J, Guillevic J (2013) A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J Environ Radioact 126:216–225CrossRefGoogle Scholar
  14. Fontanella L, Ippoliti L, Valentini P (2013) A functional spatio-temporal model for geometric shape analysis. In: Pesarin F, Torelli N, Bar-Hen A (eds) Adv Theor Appl Stat. Springer, Berlin Heidelberg, pp 75–86CrossRefGoogle Scholar
  15. Fontanella L, Ippoliti L, Sarra A, Valentini P, Palermi S (2015) Hierarchical generalised latent spatial quantile regression models with applications to indoor radon concentration. Stoch Environ Res Risk Assess 29:357–367CrossRefGoogle Scholar
  16. Fontanella L, Sarra A, Valentini P, Palermi S (2016) Quantile regression and Bayesian cluster detection to identify radon prone areas. J Environ Radioact 164:354–364CrossRefGoogle Scholar
  17. Fontanella L, Ippoliti L, Valentini P (2019) Predictive functional anova models for longitudinal analysis of mandibular shape changes. Biometrical J. Google Scholar
  18. Friedmann H (2005) Final results of the Austrian radon project. Health Phys 89(4):339–348CrossRefGoogle Scholar
  19. Gunby JA, Darby SC, Miles JCH, Green BM, Cox DR (1993) Factors affecting indoor radon concentrations in the United Kingdom. Health Phys 64:2–11CrossRefGoogle Scholar
  20. Hastie DI, Liverani S, Azizi L, Richardson S, Stücker I (2013) A semi-parametric approach to estimate risk functions associated with multi-dimensional exposure profiles: application to smoking and lung cancer. BMC Med Res Methodol 13:129CrossRefGoogle Scholar
  21. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55–67CrossRefGoogle Scholar
  22. ISPRA (2012) Cartografia geologica d’italia alla scala \(1:50.000\). in: Servizio geologico d’italia e progetto carg. Technical reportGoogle Scholar
  23. Jain S, Neal RM (2007) Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Anal 2(3):445–472CrossRefGoogle Scholar
  24. Kemsky J, Klingel R, Siehl AR, Valdivia-Manchego M (2009) From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56(7):1269–1279CrossRefGoogle Scholar
  25. Kreienbrock L, Kreuzer M, Gerken M, Dingerkus G, Wellmann J, Keller G, Wichmann HE (2001) Case-control study on lung-cancer and residential radon in Western Germany. Am J Epidemiol 89(4):339–348Google Scholar
  26. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Letourneau EG, Lynch CF, Lyon JI, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology 16(4):137–145CrossRefGoogle Scholar
  27. Kropat G, Bochud F, Jaboyedoff M, Laedermann J, Murith C, Palacios M, Baechler S (2015) Predictive analysis and mapping of indoor radon concentrations in a complex environment using kernel estimation: an application to Switzerland. Sci Total Environ 16(4):137–148CrossRefGoogle Scholar
  28. Lecomte JF, Solomon S, Takala J, Jung T, Strand P, Murith C, Kiselev S, Zhuo W, Shannoun F, Janssens A (2014) ICRP publication 126: radiological protection against radon exposure. Ann of ICRP 43:5–73CrossRefGoogle Scholar
  29. Liverani S, Hastie DI, Papathomas M, Richardson S (2015) PReMiuM: an R package for profile regression mixture models using Dirichlet processes. J Stat Softw 64(7):1–30CrossRefGoogle Scholar
  30. Liverani S, Lavigne A, Blangiardo M (2016) Modelling collinear and spatially correlated data. Spatial Spatio-temporal Epidemiol 18:63–73CrossRefGoogle Scholar
  31. Mardia KV, Kent JT, Goodall CR, Little JA (1996) Kriging and splines with derivative information. Biometrika 83:207–221CrossRefGoogle Scholar
  32. Mardia KV, Redfern E, Goodall CR, Alonso F (1998) The Kriged Kalman filter. Test 59:217–285CrossRefGoogle Scholar
  33. Molitor J, Papathomas M, Jerrett M, Richardson S (2010) Bayesian profile regression with an application to the National Survey of Children’s Health. Biostatistics 11(3):484–498CrossRefGoogle Scholar
  34. Molitor J, Su JG, Molitor NT, Rubio VG, Richardson S, Hastie D, Morello-Frosch R, Jerrett M (2011) Identifying vulnerable populations through an examination of the association between multipollutant profiles and poverty. Environ Sci Technol 45(3):7754–7760CrossRefGoogle Scholar
  35. Molitor J, Brown IJ, Chan Q, Papathomas M, Liverani S, Molitor N, Richardson S, Van Horn L, Daviglus ML, Dyer A, Stamler J, Elliott P, INTERMAP Research Group (2014) Blood pressuredifferences associated with optimal macronutrient intake trial forheart health (OMNIHEART)-like diet compared with a typical Americandiet. Hypertension 64:1198–1204CrossRefGoogle Scholar
  36. Ohlssen D, Sharples L, Spiegelhalter D (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Stat Med 26:2088–2112CrossRefGoogle Scholar
  37. Palermi S, Pasculli A (2008) Radon mapping in abruzzo, italy. In: Proceedings of 4th Canadian conference on Geohazards Quèbec City CanadaGoogle Scholar
  38. Palermi S, Carnesale L, Buccella G, Rancitelli D, Sulli G, Benedetti F, Capannolo R, Gianfelice G, Di Giansante A (2012) Indagine per la mappatura del radon in abruzzo. In:Proceedings del V Convegno Nazionale sugli Agenti FisiciGoogle Scholar
  39. Papathomas M, Molitor J, Richardson S, Riboli E, Vineis P (2011) Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in non smokers. Environ Health Perspect 119:84–91CrossRefGoogle Scholar
  40. Papathomas M, Molitor J, Hoggart C, Hastie D, Richardson S (2012) Exploring data from genetic association studies using Bayesian variable selection and the Dirichlet process: application to searching for gene x gene patterns. Genet Epidemiol 36:663–674CrossRefGoogle Scholar
  41. Pasculli A, Palermi S, Sarra A, Piacentini T, Miccadei E (2014) A novel modelling methodology for the analysis of radon potential based on environmental geology and Geographically Weighted Regression approach. Environ Model Softw 54:165–181CrossRefGoogle Scholar
  42. Pirani M, Best N, Blangiardo M, Liverani S, Atkinson RW, Fuller GW (2015) Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles. Environ Int 79:56–64CrossRefGoogle Scholar
  43. Price PN, Nero AV, Gelman A (1996) Bayesian prediction of mean indoor radon concentrations for Minnesota Counties. Health Phys 71:922–936CrossRefGoogle Scholar
  44. R Development Core Team (2017) R: a language and environment for statistical computing. Technical report. R Foundation for Statistical Computing, Vienna.
  45. Robertson A, Allen J, Laney R, Curnow A (2013) The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 14(7):14024–14063CrossRefGoogle Scholar
  46. Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman and Hall, New YorkCrossRefGoogle Scholar
  47. Smethurst MA, Strand T, Sundal AV, Rudjord AL (2008) Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airbone gamma spectrometry and geological mapping. Sci Total Environ 407:379–393CrossRefGoogle Scholar
  48. Smith BJ, Field RW (2007) Effect of housing factors and surficial uranium on the spatial prediction of residential radon in Iowa. Environmetrics 18:481–497CrossRefGoogle Scholar
  49. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267–288Google Scholar
  50. Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagaña X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Gražulevičiene R, Gutzkow K, Julvez J, Keun HC, Kogevinas M, McEachan RRC, Meltzer HM, Sabidò E, Schwarze PE, Siroux V, Sunyer J, Want E, Zeman F, Nieuwenhuijsen MJ (2014) The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect 122:535–544CrossRefGoogle Scholar
  51. World Health Organization (2009) WHO handbook on indoor radon: a public health perspective. World Health Organization, GenevaGoogle Scholar
  52. Zou T, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301–320CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lara Fontanella
    • 1
  • Luigi Ippoliti
    • 2
  • Annalina Sarra
    • 2
    Email author
  • Eugenia Nissi
    • 2
  • Sergio Palermi
    • 3
  1. 1.Department of Legal and Social SciencesUniversity G. d’AnnunzioPescaraItaly
  2. 2.Department of EconomicsUniversity G. d’AnnunzioPescaraItaly
  3. 3.Agency of Environmental Protection of Abruzzo (ARTA)PescaraItaly

Personalised recommendations