Advertisement

Educational Studies in Mathematics

, Volume 102, Issue 2, pp 299–302 | Cite as

Effect sizes, epistemological issues, and identity of mathematics education research: a commentary on editorial 102(1)

  • Jérôme ProulxEmail author
  • Jean-François Maheux
Article
  • 65 Downloads

Stepping back

In the last editorial (Bakker et al., 2019), various editors of journals in mathematics education research address some issues related to effect sizes in quantitative studies for mathematics education and their usually accompanying analyses and meta-analyses. These issues appear timely, as discussions on effect sizes are becoming overtly present in our field, but also, and in some places mainly, in the discourse of various practitioners in school milieus.

Being acquainted with this kind of work as commentators (Proulx, 2017, 2019), we take notice of the relevance of the points raised by the editors. In this, we saw an opportunity to step back even further and raise some issues of importance about our entire research field. In essence, we felt that in addition to the technical, methodological, and empirical questions raised by the editors in their 12 points, there were a number of epistemological matters worth underlining in order to stimulate and engage fruitful...

Notes

References

  1. Bakker, A., Cai, J., English, L., Kaiser, G., Mesa, V., & Van Dooren, W. (2019). Beyond small, medium, or large: points of consideration when interpreting effect sizes. Educational Studies in Mathematics, 102, 1–8.  https://doi.org/10.1007/s10649-019-09908-4 CrossRefGoogle Scholar
  2. Bauersfeld, H. (1977). B4: Research related to the mathematical learning process. In H. Athen & H. Kunle (Eds.), Proceedings of the Third International Congress on Mathematics Education (pp. 231–245). Karlsruhe, Germany: ICME-3.Google Scholar
  3. Biesta, G. J. J. (2007). Why “what works” won’t work: evidence-based practice and the democratic deficit in educational research. Educational Theory, 57(1), 1–22.CrossRefGoogle Scholar
  4. Biesta, G. J. J. (2010). Why ‘what works’ still won’t work: from evidence-based education to value-based education. Studies in Philosophy Education, 29, 491–503.CrossRefGoogle Scholar
  5. Proulx, J. (2015). Mathematics education as study. For the Learning of Mathematics, 35(3), 25–27.Google Scholar
  6. Proulx, J. (2017). Essai critique sur les travaux de John Hattie pour l’enseignement des mathématiques: Une entrée par la didactique des mathématiques. Chroniques – fondements et épistémologie de l’activité mathématique. www.chroniques.uqam.ca
  7. Proulx, J. (2019). Les données probantes et un point de vue de didactique des mathématiques. Chroniques – fondements et épistémologie de l’activité mathématique. www.chroniques.uqam.ca
  8. Sierpinska, A., & Kilpatrick, J. (Eds.). (1998). Mathematics education as a research domain: a search for identity. Dordrecht, the Netherlands: Kluwer.Google Scholar
  9. Struik, D. J. (1987). A concise history of mathematics (4th rev. ed.). Minneola, NY: Dover.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire Épistémologie et Activité MathématiqueUniversité du Québec à MontréalMontrealCanada

Personalised recommendations