Advertisement

Educational Studies in Mathematics

, Volume 100, Issue 2, pp 161–176 | Cite as

The instrumental deconstruction as a link between drawing and geometrical figure

  • Joris MithalalEmail author
  • Nicolas Balacheff
Article

Abstract

In this article, we examine how it is possible, in the teaching and learning of geometry, to bridge the gap between problems involving drawings and figures, which is essential to the learning of mathematical proof. More precisely, the way students’ drawing perception has to evolve, from Iconic Visualization to Non-Iconic Visualization (Duval, Annales de Didactique et de Sciences Cognitives, 10, 5–53, 2005). We show that the Instrumental Deconstruction process is multifaceted and central in this evolution. We present a theoretical framework, in relation with an experiment based on a 3D dynamic geometry environment. Based on a case study, we show that construction tasks with specific representations make the instrumental work play a key role in the learning of geometry.

Keywords

Deductive geometry 3D dynamic geometry Instrumental deconstruction Drawings 

Notes

References

  1. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.CrossRefGoogle Scholar
  2. Balacheff, N. (1988). A study of students’ proving processes at the junior high school level. In I. Wirszup & R. Streit (Eds.), Second UCSMP international conference on mathematics education (pp. 284–297). Chicago:NCTM.Google Scholar
  3. Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. V. Martinez & A. Castro (Eds.), Proceedings of the 35th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (PME-NA) (pp. 2–15). Chicago, IL, États-Unis: PME.Google Scholar
  4. Brousseau, G. (1997). Theory of didactical situations. (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans.). Dordrecht: Kluwer Academic publishers.Google Scholar
  5. Chaachoua, H. (1997). Fonctions du dessin dans l’enseignement de la géométrie dans l’espace. Etude d’un cas: la vie des problèmes de construction et rapports des enseignants à ces problèmes (Unpublished doctoral dissertation). Grenoble:Université Joseph Fourier.Google Scholar
  6. Confrey, J. (1990). A review of the research on student conceptions in mathematics, science, and programming. In C. Courtney (Ed.), Review of research in education (American Educational Research Association) (Vol. 16, pp. 3–56). Washington: American Educational Research Association.Google Scholar
  7. Duval, R. (1994). Les différents fonctionnements d’une figure dans une démarche géométrique. Repères IREM, 17, 121–138.Google Scholar
  8. Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 3–26). Cuernavaca:PME.Google Scholar
  9. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5–53.Google Scholar
  10. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139–162.CrossRefGoogle Scholar
  11. Gaudin, N. (2005). Place de la validation dans la conceptualisation, le cas du concept de fonction (Unpublished doctoral dissertation). Grenoble:Université Joseph Fourier.Google Scholar
  12. Harel, G. (2008). DNR perspective on mathematics curriculum and instruction, part I: Focus on proving. Zentralblatt Für Didaktik Der Mathematik, 40(3), 487–500.CrossRefGoogle Scholar
  13. Hatterman, M. (2008). The dragging process in three dimensional dynamic geometry environments (DGE). In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the joint meeting of PME 32 and PME-NA XXX (Vol. 32, pp. 129–136). Morelia: PME.Google Scholar
  14. Healy, L., Hoelzl, R., Hoyles, C., & Noss, R. (1994). Messing up. Micromath, 10(1), 14–17.Google Scholar
  15. Jahnke, H. N. (2007). Proofs and hypotheses. ZDM, Zentralblatt Für Didaktik Der Mathematik, 1–2(39), 79–86.CrossRefGoogle Scholar
  16. Laborde, C. (1993). The computer as part of the learning environment: The case of geometry. In C. Keitel & K. Ruthven (Eds.), Learning from computers: Mathematics education and technology (Vol. 121, pp. 48–67). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  17. Laborde, C. (2000). Dynamic geometry as a source of rich learning contexts for the complex activity of proving. Educational Studies in Mathematics, 44, 151–161.CrossRefGoogle Scholar
  18. Laborde, C. (2004). The hidden role of diagrams in students’ construction of meaning in geometry. In J. Kilpatrick, O. Skovsmose, & P. Valero (Eds.), Meaning in mathematics education (Vol. 37, pp. 159–179). New York, NY: Springer.CrossRefGoogle Scholar
  19. Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. Recherches En Didactique Des Mathématiques, 14(1), 165–210.Google Scholar
  20. Laborde, C., Mithalal, J., & Restrepo, A. (2009). The use of tools in the learning and teaching of geometry. Paper presented at the National Council of Teachers of Mathematics Research Presession, Washington DC.Google Scholar
  21. Mithalal, J. (2010). Déconstruction instrumentale et déconstruction dimensionnelle dans le contexte de la géométrie dynamique tridimensionnelle (Unpublished doctoral dissertation). Université de Grenoble.Google Scholar
  22. Parzysz, B. (1988). “Knowing” vs “seeing”, problems of the plane representation of space geometry figures. Educational Studies in Mathematics, 19, 79–92.CrossRefGoogle Scholar
  23. Parzysz, B. (2006). La géométrie dans l’enseignement secondaire et en formation de professeurs des écoles : de quoi s’agit-il? Quaderni di Ricerca in Didattica, 17, 121–144.Google Scholar
  24. Pedemonte, B., & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the cK¢-enriched Toulmin model. The Journal of Mathematical Behavior, 41, 104–122.CrossRefGoogle Scholar
  25. Vadcard, L. (2000). Étude de la notion d’angle sous le point de vue des conceptions (Unpublished doctoral dissertation). Université Joseph Fourier.Google Scholar
  26. Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94.CrossRefGoogle Scholar
  27. Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14, 293–305.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Université de Lyon, Université Claude Bernard Lyon 1Villeurbanne CedexFrance
  2. 2.Laboratoire d’Informatique de GrenobleUniversity Grenoble AlpesGrenobleFrance

Personalised recommendations