Advertisement

Quantum dots functionalized with gH625 attenuate QDs oxidative stress and lethality in Caenorhabditis elegans: a model system

  • Emilia Galdiero
  • Antonietta SicilianoEmail author
  • Lucia Lombardi
  • Annarita Falanga
  • Stefania Galdiero
  • Francesca Martucci
  • Marco Guida
Article

Abstract

Nanomaterials have revolutionized many scientific fields and are widely applied to address environmental problems and to develop novel health care strategies. However, their mechanism of action is still poorly understood. Several nanomaterials for medical applications are based on quantum dots (QDs). Despite their amazing physico-chemical properties, quantum dots display significant adverse effects. In the present study, the effects of QDs on the motor nervous system of nematodes Caenorhabditis elegans have been investigated as a non-mammalian alternative model. We also explored the possibility of modifying the toxicity of QDs by coating with a cell-penetrating peptide gH625 and thus we analysed the effects determined by QDs-gH625 complexes on the nematodes. With this work, we have demonstrated, by in vivo experiments, that the peptide gH625 is able to reduce the side effects of metallic nanoparticle making them more suitable for medical applications.

Keywords

Caenorhabditis elegans Quantum dots Ecotoxicity Drug delivery 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Acosta C et al. (2018) Toxicological assessment of mesoporous silica particles in the nematode Caenorhabditis elegans. Environ Res 166:61–70.  https://doi.org/10.1016/j.envres.2018.05.018 CrossRefGoogle Scholar
  2. de Alteriis E et al. (2018) Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microb Pathog 125:189–195.  https://doi.org/10.1016/j.micpath.2018.09.027 CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  4. Carberry TP et al. (2012) Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: towards intracellular delivery. Chemistry 18:13678–13685.  https://doi.org/10.1002/chem.201202358 CrossRefGoogle Scholar
  5. Chen N et al. (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33:1238–1244.  https://doi.org/10.1016/j.biomaterials.2011.10.070 CrossRefGoogle Scholar
  6. Cho SJ et al. (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980.  https://doi.org/10.1021/la060093j CrossRefGoogle Scholar
  7. Contreras EQ et al. (2013) Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ Sci Technol 47:1148–1154.  https://doi.org/10.1021/es3036785 CrossRefGoogle Scholar
  8. Falanga A et al. (2011) A peptide derived from herpes simplex virus type 1 glycoprotein H: membrane translocation and applications to the delivery of quantum dots. Nanomedicine 7:934.  https://doi.org/10.1016/j.nano.2011.04.009 CrossRefGoogle Scholar
  9. Falanga A et al. (2018) Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery. Sci Rep 8:13836–13836.  https://doi.org/10.1038/s41598-018-32095-w CrossRefGoogle Scholar
  10. Falanga A, Cantisani M, Pedone C, Galdiero S (2009) Membrane fusion and fission: enveloped viruses. Protein Pept Lett 16:751–759CrossRefGoogle Scholar
  11. Falanga A, Galdiero M, Galdiero S (2015) Membranotropic cell penetrating peptides: the outstanding journey. Int J Mol Sci 16:25323–25337.  https://doi.org/10.3390/ijms161025323 CrossRefGoogle Scholar
  12. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239.  https://doi.org/10.1038/35041687 CrossRefGoogle Scholar
  13. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112.  https://doi.org/10.1146/annurev.bi.64.070195.000525 CrossRefGoogle Scholar
  14. Galdiero E et al. (2017) Daphnia magna and xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomed 12:2717–2731.  https://doi.org/10.2147/ijn.s127226 CrossRefGoogle Scholar
  15. Galdiero S et al. (2010) The presence of a single N-terminal histidine residue enhances the fusogenic properties of a membranotropic peptide derived from herpes simplex virus type 1 glycoprotein H. J Biol Chem 285:17123–17136.  https://doi.org/10.1074/jbc.M110.114819 CrossRefGoogle Scholar
  16. Galdiero S et al. (2012) Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system. Biochemistry 51:3121–3128.  https://doi.org/10.1021/bi201589m CrossRefGoogle Scholar
  17. Galdiero S, Falanga A, Morelli G, Galdiero M (2015) gH625: a milestone in understanding the many roles of membranotropic peptides. Biochim Biophys Acta 1848:16–25.  https://doi.org/10.1016/j.bbamem.2014.10.006 CrossRefGoogle Scholar
  18. Galstyan A et al. (2019) Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun 10:3850.  https://doi.org/10.1038/s41467-019-11719-3 CrossRefGoogle Scholar
  19. Gao X et al. (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72.  https://doi.org/10.1016/j.copbio.2004.11.003 CrossRefGoogle Scholar
  20. Garsin DA et al. (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 300:1921.  https://doi.org/10.1126/science.1080147 CrossRefGoogle Scholar
  21. Guarnieri, D et al. (2015) Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. Nanotechnology 26.  https://doi.org/10.1088/0957-4484/26/41/415101 CrossRefGoogle Scholar
  22. Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299:1351.  https://doi.org/10.1126/science.1082358 CrossRefGoogle Scholar
  23. Hodgkin J, Doniach T (1997) Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146:149–164Google Scholar
  24. Hsu P-CL, O’Callaghan M, Al-Salim N, Hurst MRH (2012) Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ Toxicol Chem 31:2366–2374.  https://doi.org/10.1002/etc.1967 CrossRefGoogle Scholar
  25. Iachetta G et al. (2019) gH625-liposomes as tool for pituitary adenylate cyclase-activating polypeptide brain delivery. Sci Rep. 9:9183–9183.  https://doi.org/10.1038/s41598-019-45137-8 CrossRefGoogle Scholar
  26. Jamieson T et al. (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732.  https://doi.org/10.1016/j.biomaterials.2007.07.014 CrossRefGoogle Scholar
  27. Khosravi-Katuli K et al. (2018) Effects of ZnO nanoparticles in the Caspian roach (Rutilus rutilus caspicus). Sci Total Environ 626:30–41.  https://doi.org/10.1016/j.scitotenv.2018.01.085 CrossRefGoogle Scholar
  28. Li D et al. (2019) Cross-linked poly(ethylene glycol) shells for nanoparticles: enhanced stealth effect and colloidal stability. Langmuir 35:8799–8805.  https://doi.org/10.1021/acs.langmuir.9b01325 CrossRefGoogle Scholar
  29. Li Y et al. (2013) High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans. PLoS One 8:e71180.  https://doi.org/10.1371/journal.pone.0071180 CrossRefGoogle Scholar
  30. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330.  https://doi.org/10.1897/08-262.1 CrossRefGoogle Scholar
  31. Mallo GV et al. (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214.  https://doi.org/10.1016/S0960-9822(02)00928-4 CrossRefGoogle Scholar
  32. Martin-Serrano, A, Gomez, R, Ortega, P & de la Mata, FJ (2019) Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics 11.  https://doi.org/10.3390/pharmaceutics11090448 CrossRefGoogle Scholar
  33. McMahan RS, Lee V, Parks WC, Kavanagh TJ, Eaton DL (2014) In vitro approaches to assessing the toxicity of quantum dots. Methods Mol Biol 1199:155–163.  https://doi.org/10.1007/978-1-4939-1280-3_12 CrossRefGoogle Scholar
  34. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435.  https://doi.org/10.1038/nmat1390 CrossRefGoogle Scholar
  35. Oral R, Pagano G, Siciliano A, Toscanesi M, Gravina M, Di Nunzio A, Palumbo A, Thomas PJ, Tommasi F, Burić P, Lyons DM, Guida M, Trifuoggi M (2019) Soil pollution and toxicity in an area affected by emissions from a bauxite processing plant and a power plant in Gardanne (southern France). Ecotoxicol Environ Saf 170:55–61.  https://doi.org/10.1016/j.ecoenv.2018.11.122 CrossRefGoogle Scholar
  36. Pellico, J et al. (2019) Unambiguous detection of atherosclerosis using bioorthogonal nanomaterials. Nanomedicine  https://doi.org/10.1016/j.nano.2018.12.015 CrossRefGoogle Scholar
  37. Qu Y et al. (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183.  https://doi.org/10.1021/nl201391e CrossRefGoogle Scholar
  38. Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172.  https://doi.org/10.1016/j.etap.2009.12.003 CrossRefGoogle Scholar
  39. Troemel ER et al. (2006) p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLOS Genet 2:e183.  https://doi.org/10.1371/journal.pgen.0020183 CrossRefGoogle Scholar
  40. Ulusoy M et al. (2016) Evaluation of CdTe/CdS/ZnS core/shell/shell quantum dot toxicity on three-dimensional spheroid cultures. Toxicol Res 5:126–135.  https://doi.org/10.1039/c5tx00236b CrossRefGoogle Scholar
  41. Valiante S et al. (2015) Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood-brain barrier in rats. Int J Nanomed 10:1885–1898.  https://doi.org/10.2147/ijn.s77734 CrossRefGoogle Scholar
  42. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177.  https://doi.org/10.1016/j.envpol.2008.11.004 CrossRefGoogle Scholar
  43. Winnik FM, Maysinger D (2013) Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res 46:672–680.  https://doi.org/10.1021/ar3000585 CrossRefGoogle Scholar
  44. Wu, L et al. (2019) Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy. Acta Biomater.  https://doi.org/10.1016/j.actbio.2019.01.026 CrossRefGoogle Scholar
  45. Zhao Y et al. (2015) Quantum dots exposure alters both development and function of D-type GABAergic motor neurons in nematode Caenorhabditis elegans. Toxicol Res 4:399–408.  https://doi.org/10.1039/c4tx00207e CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Emilia Galdiero
    • 1
  • Antonietta Siciliano
    • 1
    Email author
  • Lucia Lombardi
    • 2
  • Annarita Falanga
    • 3
  • Stefania Galdiero
    • 2
  • Francesca Martucci
    • 1
  • Marco Guida
    • 1
  1. 1.Department of BiologyUniversity of Naples “Federico II”— Monte Sant’AngeloNapoliItaly
  2. 2.Department of PharmacyCiRPEB—University of Naples “Federico II”NapoliItaly
  3. 3.Department of Agricultural ScienceUniversity of Naples Federico II, via Università 100NapoliItaly

Personalised recommendations