Advertisement

Ecotoxicology

, Volume 28, Issue 7, pp 825–833 | Cite as

Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus)

  • Denghui Deng
  • Wenbo Duan
  • Hao Wang
  • Kun Zhang
  • Jianglong Guo
  • Linlin Yuan
  • Likui Wang
  • Shaoying WuEmail author
Article

Abstract

The wheat aphid Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) is a devastating pest of wheat crops worldwide. Dinotefuran, a novel neonicotinoid insecticide, has been used to prevent piercing-sucking agricultural insects, such as R. padi. This research showed that the dinotefuran not only caused direct mortality but also affected the physiology of R. padi via sublethal effects. In this study, residual film bioassay results indicated that there were no significant differences in the toxicity of dinotefuran between field in 2017 and laboratory strains. However, the longevity, fecundity and female preoviposition of the F0 generation were significantly decreased by exposure to different sublethal doses (L10, L20 and L30) of dinotefuran. In contrast, the fecundity and female preoviposition of the F1 generation were significantly increased by the sublethal treatment L20, although this dose reduced net reproductive rate, intrinsic rate of increase and finite rate of increase. These findings are the first laboratory evidence of hormesis attributable to low dinotefuran doses. Developmental duration of nymphs was significantly increased by the sublethal doses L20 and L30 but not L10. Sublethal exposure to dinotefuran can increase the transgenerational population growth of R. padi and affected demographic parameters of the target insect. This study provides useful data for developing management strategies for R. padi involving the use of dinotefuran.

Keywords

Dinotefuran Lethal effects Sublethal effects Hormoligosis Rhopalosiphum padi 

Notes

Acknowledgements

This study was supported by the China National Natural Science Foundation as part of the project “Construction of a suppression subtractive hybridization cDNA library and functional analysis of differentially expressed cytochrome P450s” (grant number: 31201541), Chinese Postdoctoral Science Foundation (First Class Support) 2018M640675. The Scientific Research Foundation of Hainan University KYQD(2R)1963.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ali E, Liao X, Yang P, Mao KK, Zhang XL, Shakeel M, Salim AMA, Wan H, Li JH (2017) Sublethal effects of buprofezin on development and reproduction in the white-backed lanthopper, Sogatella furcifera (Hemiptera: Delphacidae). Sci Rep 7:16913CrossRefGoogle Scholar
  2. Ayyanath MM, Cutler GC, Scott-Dupree CD, Sibley PK (2013) Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8(9):e74532CrossRefGoogle Scholar
  3. Bao HB, Liu SH, Gu JH, Wang XZ, Liang XL, Liu ZW (2009) Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag Sci 65:170–174CrossRefGoogle Scholar
  4. Bonia DR, Onagbola EB, Salyani M, Stelinskii LL (2009) Antifeedant and sub lethal effects of imidacloprid on Asian citrus psyllid, Diaphorina citri. Pest Manag Sci 65:870–877CrossRefGoogle Scholar
  5. Brown RA (1989) Pesticides and non-target terrestrial invertebrates: an industrial approach. In: Jepson PC (ed) Pesticides and non-target invertebrates, Intercept, WimborneGoogle Scholar
  6. Chen M, Han Z, Qiao X, Qu M (2007) Resistance mechanisms and associated mutations in acetylcholinesterase genes in Sitobion avenae (Fabricius). Pest Biochem Phys 87:189–195CrossRefGoogle Scholar
  7. Crawley SE, Gordon JR, Kowles KA, Potter MF, Haynes KF (2017) Impact of sublethal exposure to a pyrethroid-neonicotinoid insecticide on mating, fecundity and development in the bed bug Cimex lectularius L. (Hemiptera: Cimicidae). Plos ONE 12(5):e0177410CrossRefGoogle Scholar
  8. Cui L, Yang DB, Li KB, Cao YZ, Y HZ (2010) Sublethal effects of pymetrozine on Rhopalosiphum padi. Plant Prot 36:26–30Google Scholar
  9. Cutler CG, Ramanaidu K, Astatkie T, Isman MB (2009) Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag Sci 65:205–209CrossRefGoogle Scholar
  10. Cutler GC (2013) Insects, insecticides and hormesis: evidence and considerations for study. Dose Response 11:154–117CrossRefGoogle Scholar
  11. Desneux N (2007) Decourtye A and Delpuech JM, the sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  12. Dikshit AK, Pachauri DC, Jindal T (2003) Maximum residue limit and risk assessment of beta-cyfluthrin and imidacloprid on tomato (Lycopersicon esculentumMill). Bull Environ Contam Toxicol 70(6):1143–1150CrossRefGoogle Scholar
  13. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  14. Guedes RN, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70(5):690–697CrossRefGoogle Scholar
  15. Gong YH, Xu BY, Zhang YJ, Gao XW, Wu QJ (2015) Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response. Ecotoxicology 24(5):1141–1151CrossRefGoogle Scholar
  16. Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao XW (2013) Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Prot 48:29–34CrossRefGoogle Scholar
  17. Han WS, Zhang SF, Shen FY, Liu M, Ren CC, Gao XW (2012) Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 68:1184–1190CrossRefGoogle Scholar
  18. He Y, Zhao J, Wu D, Wyckhuys KA, Wu K (2011) Sublethal effects of imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae) under laboratory conditions. J Econ Entomol 104:833–838CrossRefGoogle Scholar
  19. He YX, Zhao JW, Zheng Y, Weng QY, Biondi A, Desneux N, Wu KM(2013) Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci Int J Biol Sci 9:246–255CrossRefGoogle Scholar
  20. Hill DS (2008) Pests of crops in warmer climates and their control. Springer, SwitzerlandGoogle Scholar
  21. Hu L, Xie FQ, Xiang JY, Cao H (2008) Analysis of transmission capabilities of Barley Yellow Dwarf Virus (BYDV) by Schizaphis graminum and Rhopalosiphum padi in Northwest China. J Triticeae Crops 29(4):721–724Google Scholar
  22. Hugh AS, Curtis AN, Charles AM, Cindy LM (2016) Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) to imidacloprid, thiamethoxam, dinotefuran and flupyradifurone in South Florida. Insects 7(4):57. 10.3390CrossRefGoogle Scholar
  23. Hulting FL, Orr DB, Obrycki JJ (1990) A computer program for calculation and statistical comparison of intrinsic rates of increase and associated life table parameters. Fla Entomol 73:601–612CrossRefGoogle Scholar
  24. James DG, Price TS (2002) Fecundity in two spotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95(4):729–732CrossRefGoogle Scholar
  25. Kazuhisa K, Keiichiro N (2002) Structural effects of dinotefuran and analogues in insecticidal and neural activities. Pest Manag Sci 58:669–676CrossRefGoogle Scholar
  26. Kazuki M, Takashi O, Nobuyuki K, Yoshihisa O (2002) Interaction of dinotefuran and its analogues with nicotinic acetylcholine receptors of cockroach nerve cords. Pest Manag Sci 58:190–196CrossRefGoogle Scholar
  27. Kerns DL, Stewart SD (2000) Sublethal effects of insecticides on theintrinsic rate of increase of cotton aphid. Entomol Exp Appl 94:41–49CrossRefGoogle Scholar
  28. Kurwadkar S, Evans A (2016) Neonicotinoids: systemic insecticides and systematic failure. Bull Environ Contam Toxicol 97(6):745–748CrossRefGoogle Scholar
  29. Leather SR, Walters KFA, Dixon AFG (1989) Factors Determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: a study and review. Bull Entomol Res 79:345–360CrossRefGoogle Scholar
  30. Lu YH, Gao XW (2007) A method for mass culture of wheat aphid. Chin Bull Entomol 44:289–290Google Scholar
  31. Lu YH, Gao XW (2009) Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99:611–617CrossRefGoogle Scholar
  32. Lu YH, Yang T, Gao XW (2009) Establishment of baseline susceptibility data to various insecticides for aphids Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius) (Homoptera: Aphididae) by the method of residual film in glass tube. Acta Èntomol Sin 52:52–58Google Scholar
  33. Lu YH, Zheng XS, Gao XW (2016) Sublethal effects of imidacloprid on the fecundity, longevity, and enzyme activity of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus). Bull Entomol Res 106(4):551–559CrossRefGoogle Scholar
  34. Luckey TD (1968) Insecticide hormoligosis. J Econ Entomol 61:7–12CrossRefGoogle Scholar
  35. Mackauer M (1983) Quantitative assessment of Aphidius smithi (Hymenoptera: Aphidiidae): fecundity, intrinsic rate of increase, and functional response. Can Entomol 115:399–415CrossRefGoogle Scholar
  36. Mdddrell SHP, Reynolds SE (1972) Release of hormones in insects after poisoning with insecticides. Nature 236:404–406CrossRefGoogle Scholar
  37. Miao J, Du ZB, Wu YQ, Gong ZJ, Jiang YL, Duan Y, Li T, Lei CL (2014) Sub-lethal effects of four neonicotinoid seed treatments on the demography and feeding behavior of the wheat aphid Sitobion avenae. Pest Manag Sci 70:55–59CrossRefGoogle Scholar
  38. Minks AK, Harrewijn P (1987) Aphids: their biology, natural enemies and control. Elsevier, AmsterdamGoogle Scholar
  39. Miyagi S, Komaki I, Ozoe Y (2006) Identification of a high-affinity binding site for dinotefuran in the nerve cord of the American cockroach. Pest Manag Sci 62:293–298CrossRefGoogle Scholar
  40. Moscardini VF, Gontijo Pda C, Carvalho GA, Oliveira RL, Mai JB, Silva FF (2013) Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere 92(12):490–496CrossRefGoogle Scholar
  41. Ni JP, Ma YF, Shi JJ, Liu Y (2015) Study on insecticidal activity and application technology of dinotefuran World Pest 37(1):41–44Google Scholar
  42. Qu C, Zhan W, Li FQ, Tetreau G, Luo C, Wang R (2017) Lethal and sublethal effects of dinotefuran on two invasive whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae). J Asia Pac Entomol 20:325–330CrossRefGoogle Scholar
  43. Rahmani S, Bandani AR (2013) Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Prot 54:168–175CrossRefGoogle Scholar
  44. Raymond M (1985) Present d′ un programme d′ analyse log-probit pour microordinateur Cahers Orstrome Sér. Entomol Med Parasitol 23:117–121Google Scholar
  45. Sarıtaş E, Turkish R (2016) The effects of some pesticides on fecundity and lifespan of Panonychus ulmi (Koch) and Neoseiulus californicus (Mc Gregor): hormoligosis. Turk J Entomol 40(1):97–106Google Scholar
  46. Savaris M, Lampert S, Salvadori JR, Lau D, Pereira PRVS, Smaniotto MA(2013) Population growth and damage caused by Rhopalosiphum padi (L.) (Hemiptera, Aphididae) on different cultivars and phenological stages of wheat Neotrop Entomol 42:539–543CrossRefGoogle Scholar
  47. Schliephake E, Habekuss A, Scholz M, Ordon F (2013) Barley yellow dwarf virus transmission and feeding behaviour of Rhopalosiphum padi on Hordeum bulbosum clones. Èntomol Exp Appl 146:347–356CrossRefGoogle Scholar
  48. Shah FM, Razaq Ali A, Han P, Chen J (2017) Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. Plos ONE 12(9):e0184639CrossRefGoogle Scholar
  49. Shao XS, Xia SS, Durkinc KA, Casidaa JE (2013) Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and asynergist. Proc Natl Acad Sci USA 110(43):17273–17277CrossRefGoogle Scholar
  50. Shi XB, Jiang LL, Wang HY, Qiao K, Wang D, Wang KY (2011) Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag Sci 67:1528–1533CrossRefGoogle Scholar
  51. Smith HA, Nagle CA, MacVean CA, McKenzie CL (2016) Susceptibility of Bemisia tabaci MEAM1 (Hemiptera:Aleyrodidae) to imidacloprid, thiamethoxam, dinotefuran and flupyradifurone in South Florida. Insects 7:57CrossRefGoogle Scholar
  52. Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519CrossRefGoogle Scholar
  53. Stark JD, Wennergren U (1995) Can population effects of pesticides be predicted from demographic toxicological studies. J Econ Entomol 88:1089–1096CrossRefGoogle Scholar
  54. Tan JG, Galligan JJ, Hollingworth RM (2007) Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons. Neuro Toxicol 28(4):829–842Google Scholar
  55. Tan Y, Biondi A, Desneux N, Gao XW (2012) Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dur). Ecotoxicology 21:1989–1997CrossRefGoogle Scholar
  56. Tjeerd B, Jozef JM (2017) Three years of banning neonicotinoid insecticides based on sub-lethal effects: can we expect to see effects on bees? Pest Manag Sci 73:1299–1304CrossRefGoogle Scholar
  57. Wakita T (2011) Molecular design of dinotefuran with unique insecticidal properties. J Agric Food Chem 59:2938–2942CrossRefGoogle Scholar
  58. Wang AH, Wu JC, Yu YS, Liu JL, Yue JF, Wan MY (2005) Selective insecticide-induced stimulationon fecundity and bio-chemical changes in Tryporyzaincertulas (Lepidoptera: Pyrali-dae). J Econ Entomol 98:1144–1149CrossRefGoogle Scholar
  59. Wang K, Zhang M, Huang Y, Yang Z, Su S, Chen M (2018) Characterisation of imidacloprid resistance in the bird cherry-oat aphid, Rhopalosiphum padi, a serious pest on wheat crops. Pest Manag Sci 74(6):1457–1465CrossRefGoogle Scholar
  60. Xiao D, Yang T, Desneux N, Han P, Gao X (2015) Assessment of sublethal and transgenerational effects of pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae. Plos ONE 10(6):e0128936CrossRefGoogle Scholar
  61. Yamamoto I (1999) Nicotine to nicotinoids: 1962 to 1997. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer-Berlag, Tokyo, pp 3–27Google Scholar
  62. Yang HQ, Wang KY, Shi XB, Niu F (2009) Cross-resistance of imidacloprid-resistant population of Aphis gossypii Glover(Homoptera: Aphididae) to pymetrozine and other three pesticides and the effects of pesticide application on its biological characteristics. Acta Èntomol Sin 52(2):175–182Google Scholar
  63. Yin KS, Wu WW, He CX, Luo YJ (2005) Five pesticides effect Brevicoryne brassicae and Diaeretiella rapae. Plant Prot 31:84–85Google Scholar
  64. Zhang LP, Lu H, Guo K, Yao SM, Cui F (2017) Insecticide resistance status and detoxification enzymes of wheat aphids Sitobion avenae and Rhopalosiphum padi. Sci China Life Sci 60(8):927–930CrossRefGoogle Scholar
  65. Zhang M, Qiao X, Li Y, Fang B, Zuo Y, Chen M (2016) Cloning of eight Rhopalosiphum padi (Hemiptera: Aphididae) nAChR subunit genes and mutation detection of the β1 subunit in field samples from China. Pest Biochem Physiol 132:89–95CrossRefGoogle Scholar
  66. Zhang NQ, Yu LC, Wang MY, Liu YH (2007) Resistance situation of wheat aphid and its synthetic control. Acta Agric Jiangxi 19:50–52Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan UniversityHaikouChina
  2. 2.College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina

Personalised recommendations