Advertisement

Ecotoxicology

, Volume 28, Issue 7, pp 790–800 | Cite as

Magnitude of the mixture hormetic response of soil alkaline phosphatase can be predicted based on single conditions of Cd and Pb

  • Yongli Zhu
  • Chenglei Liu
  • Yang You
  • Jian Liu
  • Yanhui Guo
  • Jiangang HanEmail author
Article

Abstract

In soil ecosystems, it is very challenging to predict mixture hormesis effects. In the present study, soil alkaline phosphatase (ALP) was selected to investigate and predict its potential hormetic responses under Cd and Pb stresses. Typical reverse U-shaped dose–response relationships between ALP activities and the single and combined Cd and Pb were observed, showing a hormetic response of soil itself. The maximum stimulatory magnitudes ranged in 8.0 – 8.6% under 0.004 – 0.2 mg/kg Cd and 80 – 400 mg/kg Pb, respectively. An enhanced stimulation of 15.7% occurred under the binary mixtures of 0.6 mg/kg Cd and 200 mg/kg Pb. In addition, a dosage-independent binary linear regression model was proposed based on an assumption of a linear relationship between the single and combined hormetic responses under Cd and Pb. Our model can well predict ALP’s responses in the presence of the two metals’ mixtures (p < 0.1). Our findings provided new understandings to hormesis in soil.

Keywords

Alkaline phosphatase Cadmium Hormesis Lead Hormesis in soil 

Notes

Acknowledgements

The financial support of National Natural Science Foundation of China (No. 41471191) and Qing Lan project are greatly acknowledged.

Compliance with ethical standards

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

References

  1. Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573CrossRefGoogle Scholar
  2. Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285CrossRefGoogle Scholar
  3. Belz RG, Cedergreen N, Sørensen H (2008) Hormesis in mixtures—can it be predicted? Sci Total Environ 404:77–87CrossRefGoogle Scholar
  4. Belz RG, Piepho HP (2017) Predicting biphasic responses in binary mixtures: Pelargonic acid versus glyphosate. Chemosphere 178:88–98CrossRefGoogle Scholar
  5. Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166CrossRefGoogle Scholar
  6. Bouma J, van Ittersum MK, Stoorvogel JJ, Batjes NH, Droogers P, Pulleman MM (2017) Soil Capability: Exploring the Functional Potentials of Soils. In: Field DJ, Morgan CLS, McBratney AB (eds) Global Soil Security. Springer Int Publishing Ag, Cham, pp. 27–44CrossRefGoogle Scholar
  7. Bunemann EK, Bongiorno G, Bai ZG, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mader P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality - A critical review. Soil Biol Biochem 120:105–125CrossRefGoogle Scholar
  8. Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474CrossRefGoogle Scholar
  9. Calabrese EJ, Baldwin LA (1999) Chemical hormesis: its historical foundations as a biological hypothesis. Toxicol Pathol 27:195CrossRefGoogle Scholar
  10. Calabrese EJ, Stanek EJ, James RC, Roberts SM (1997) Soil ingestion: a concern for acute toxicity in children. Environ health Perspect 105:1354–1358CrossRefGoogle Scholar
  11. Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ (2012) Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta-Mol Basis Dis 1822:753–783CrossRefGoogle Scholar
  12. Chen Z, Zhu L, Wilkinson KJ (2010) Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper. Environ Sci Technol 44:3580–3586CrossRefGoogle Scholar
  13. Clement B, Lamonica D (2018) Fate, toxicity and bioconcentration of cadmium on Pseudokirchneriella subcapitata and Lemna minor in mid-term single tests. Ecotoxicology 27:132–143CrossRefGoogle Scholar
  14. Commission of the European Communities (1983) Environmental effects of organic and inorganic contaminants in sewage sludge. Proceedings of a work, D. Reidel Pub. Co, Reidel, Dordrecht, The NetherlandsGoogle Scholar
  15. Dan WU, LI (2012) Effects of cadmium exposure on Chlorophytum comosum growth and soil enzyme activities. Environ Chem 31:1562–1568Google Scholar
  16. Dominguez-Cortinas G, Diaz-Barriga F, Isabel Martinez-Salinas R, Cossio P, Nelinho Perez-Maldonado I (2013) Exposure to chemical mixtures in Mexican children: high-risk scenarios. Environ Sci Pollut Res 20:351–357CrossRefGoogle Scholar
  17. Driessnack MK, Jamwal A, Niyogi S (2017) Effects of chronic waterborne cadmium and zinc interactions on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Ecotoxicol Environ Saf 140:65–75CrossRefGoogle Scholar
  18. Durenkamp M, Pawlett M, Ritz K, Harris JA, Neal AL, McGrath SP (2016) Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environ Pollut 211:399–405CrossRefGoogle Scholar
  19. Erofeeva EA (2018) Hormesis and paradoxical effects of pea (Pisum sativum L.) parameters upon exposure to formaldehyde in a wide range of doses. Ecotoxicology 27:569–577CrossRefGoogle Scholar
  20. Fan D, Han J, Chen Y, Zhu Y, Li P (2018) Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland. Sci Total Environ 613:792–797CrossRefGoogle Scholar
  21. Fang L, Liu Y, Tian H, Chen H, Wang Y, Huang M (2017) Proper land use for heavy metal-polluted soil based on enzyme activity analysis around a Pb-Zn mine in Feng County, China. Environ Sci Pollut Res 24:28152–28164CrossRefGoogle Scholar
  22. Feng J, Gao Y, Ji Y, Zhu L (2017) Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model. J Hazard Mater 345:97–106CrossRefGoogle Scholar
  23. Flouty R, Khalaf G (2015) Role of Cu and pb on Ni bioaccumulation by Chlamydomonas reinhardtii: validation of the biotic ligand model in binary metal Mixtures. Ecotoxicol Environ Saf 113:79–86CrossRefGoogle Scholar
  24. Gennings C, Carter WH, Campain JA, Bae DS, Yang RSH (2002) Statistical analysis of interactive cytotoxicity in human epidermal keratinocytes following exposure to a mixture of four metals. J Agric Biol Environ Stat 7:58–73CrossRefGoogle Scholar
  25. Gomes PC, Fontes MPF, Silva AGD, Eduardo DSM, Netto AR (2001) Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65:1115–1121CrossRefGoogle Scholar
  26. Hankard PK, Bundy JG, Spurgeon DJ, Weeks JM, Wright J, Weinberg C, Svendsen C (2005) Establishing principal soil quality parameters influencing earthworms in urban soils using bioassays. Environ Pollut 133:199–211CrossRefGoogle Scholar
  27. Iavicoli I, Fontana L, Leso V, Calabrese E (2014) Hormetic dose-responses in nanotechnology studies. Sci Total Environ 487:361–374CrossRefGoogle Scholar
  28. Jia L, He X, Chen W, Liu Z, Huang Y, Yu S (2013) Hormesis phenomena under Cd stress in a hyperaccumulator-Lonicera japonica Thunb. Ecotoxicology 22:476–485CrossRefGoogle Scholar
  29. Karaca A, Cetin SC, Turgay OC, Kizilkaya R (2010) Soil enzymes as indication of soil quality. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  30. Kitagishi K, Yamane I (1981) Heavy metal pollution in soils of Japan. Scientific Societies Pr, JapanGoogle Scholar
  31. Lai HY, Chen ZS (2006) The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis). J Hazard Mater 137:1710–1718CrossRefGoogle Scholar
  32. Lee JJ, Kapur K, Rodrigues EG, Ibne Hasan MOS, Quamruzzaman Q, Wright RO, Bellinger DC, Christiani DC, Mazumdar M (2017) Anthropometric measures at birth and early childhood are associated with neurodevelopmental outcomes among Bangladeshi children aged 2–3years. Sci Total Environ 607-608:475–482CrossRefGoogle Scholar
  33. Li W, Zhang R, Liu S, Li W, Li J, Zhou H, Knops JMH (2018) Effect of loss of plant functional group and simulated nitrogen deposition on subalpine ecosystem properties on the Tibetan Plateau. Sci Total Environ 631-632:289–297CrossRefGoogle Scholar
  34. Manton WI, Angle CR, Stanek KL, Reese YR, Kuehnemann TJ (2000) Acquisition and retention of lead by young children. Environ Res 82:60–80CrossRefGoogle Scholar
  35. Martin HL, Svendsen C, Lister LJ, Gomezeyles JL, Spurgeon DJ (2009) Measurement and modeling of the toxicity of binary mixtures in the nematode caenorhabditis elegans–a test of independent action. Environ Toxicol Chem 28:97–104CrossRefGoogle Scholar
  36. Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640CrossRefGoogle Scholar
  37. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. Soil Biol 26:215–243CrossRefGoogle Scholar
  38. Nriagu JO (1984) Changing metal cycles and human health. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  39. Ohlsson Å, Cedergreen N, Oskarsson A, Ullerås E (2010) Mixture effects of imidazole fungicides on cortisol and aldosterone secretion in human adrenocortical H295R cells. Toxicology 275:21CrossRefGoogle Scholar
  40. Preston S, Coad N, Townend J, Killham K, Paton GI (2000) Biosensing the acute toxicity of metal interactions: are they additive, synergistic, or antagonistic? Environ Toxicol Chem 19:775–780CrossRefGoogle Scholar
  41. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2017) Ecotoxicity of measured concentrations of soil-applied diesel: effects on earthworm survival, dehydrogenase, urease and nitrification activities. Appl Soil Ecol 119:1–7CrossRefGoogle Scholar
  42. Rango T, Jeuland M, Manthrithilake H, McCornick P (2015) Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka. Sci Total Environ 518-519:574–585CrossRefGoogle Scholar
  43. Renieri EA, Sfakianakis DG, Alegakis AA, Safenkova IV, Buha A, Matovic V, Tzardi M, Dzantiev BB, Divanach P, Kentouri M, Tsatsakis AM (2017) Nonlinear responses to waterborne cadmium exposure in zebrafish an vivo study. Environ Res 157:173–181CrossRefGoogle Scholar
  44. Schulte EE, Kaufmann C, Peter JB (1991) The influence of sample size and heating time on soil weight lossâonâignition. Commun Soil Sci Plant Anal 22:159–168CrossRefGoogle Scholar
  45. Song K-H, Jung S-Y, Kho S-H, Hwang S-G, Ha H, Nam SY, Song J-Y (2017) Effects of low-dose irradiation on mice with Escherichia coli-induced sepsis. Toxicol Appl Pharmacol 333:17–25CrossRefGoogle Scholar
  46. Spurgeon DJ, Jones OA, Dorne JL, Svendsen C, Swain S, Stürzenbaum SR (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408:3725CrossRefGoogle Scholar
  47. Stankevičiūtė M, Sauliutė G, Svecevičius G, Kazlauskienė N, Baršienė J (2017) Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence. Ecotoxicology 26:1051–1064CrossRefGoogle Scholar
  48. Takano Y, Mori H, Kaneko T, Ishikawa Y, Marumo K, Kobayashi K (2006) Phosphatase and microbial activity with biochemical indicators in semi-permafrost active layer sediments over the past 10,000 years. Appl Geochem 21:48–57CrossRefGoogle Scholar
  49. Tan X, Machmuller MB, Wang Z, Li X, He W, Cotrufo MF, Shen W (2018) Temperature enhances the affinity of soil alkaline phosphatase to Cd. Chemosphere 196:214–222CrossRefGoogle Scholar
  50. Tan X, Wang Z, Lu G, He W, Wei G, Huang F, Xu X, Shen W (2017) Kinetics of soil dehydrogenase in response to exogenous Cd toxicity. J Hazard Mater 329:299–309CrossRefGoogle Scholar
  51. Thayer KA, Melnick R, Burns K, Davis D, Huff J (2005) Fundamental flaws of hormesis for public health decisions. Environ Health Perspect 113:1271–1276CrossRefGoogle Scholar
  52. Tian H, Kong L, Megharaj M, He W (2017) Contribution of attendant anions on cadmium toxicity to soil enzymes. Chemosphere 187:19–26CrossRefGoogle Scholar
  53. Vacchi FI, Albuquerque AF, Vendemiatti JA, Morales DA, Ormond AB, Freeman HS, Zocolo GJ, Boldrin Zanoni MV, Umbuzeiro G (2013) Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. Sci Total Environ 442:302–309CrossRefGoogle Scholar
  54. Walker CH, Hopkin SP, Sibly RM, Peakall DB, Walker CH, Hopkin SP, Sibly RM, Peakall DB (2006) Principles of ecotoxicology, CRC Press, Boca Raton, FloridaGoogle Scholar
  55. Wang T, Wang D, Lin Z, An Q, Yin C, Huang Q (2016) Prediction of mixture toxicity from the hormesis of a single chemical: a case study of combinations of antibiotics and quorum-sensing inhibitors with gram-negative bacteria. Chemosphere 150:159–167CrossRefGoogle Scholar
  56. Xia X, Lin S, Zhao J, Zhang W, Lin K, Lu Q, Zhou B (2018) Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida). Chemosphere 192:43–50CrossRefGoogle Scholar
  57. Xu X, Huang Z, Wang C, Zhong L, Tian Y, Li D, Zhang G, Shi J (2015) Toxicological effects, mechanisms, and implied toxicity thresholds in the roots of Vicia faba L. seedlings grown in copper-contaminated soil. Environ Sci Pollut Res 22:13858–13869CrossRefGoogle Scholar
  58. You R, Sun H, Yu Y, Lin Z, Qin M, Liu Y (2016) Time-dependent hormesis of chemical mixtures: a case study on sulfa antibiotics and a quorum-sensing inhibitor of Vibrio fischeri. Environ Toxicol Pharmacol 41:45–53CrossRefGoogle Scholar
  59. Yu Y-Y, Chen S-J, Chen M, Tian L-X, Niu J, Liu Y-J, Xu D-H (2016) Effect of cadmium-polluted diet on growth, salinity stress, hepatotoxicity of juvenile Pacific white shrimp (Litopenaeus vannamei): Protective effect of Zn(II)-curcumin. Ecotoxicol Environ Saf 125:176–183CrossRefGoogle Scholar
  60. Yu Z, Zhang J (2016) Time-dependent effects of [apyr]BF(4) and key contributors to their mixture stimulation on Vibrio qinghaiensis sp.-Q67 at apical and biochemical levels. J Hazard Mater 312:114–122CrossRefGoogle Scholar
  61. Zeng X, Xu X, Boezen HM, Vonk JM, Wu W, Huo X (2017) Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children. Environ Pollut 230:838–848CrossRefGoogle Scholar
  62. Zhang J, Liu SS, Yu ZY, Liu HL, Zhang J (2013a) The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp. -Q67. J Hazard Mater 258-259:70–76CrossRefGoogle Scholar
  63. Zhang J, Liu SS, Zhu XW (2014) Benefits from hazards: mixture hormesis induced by [emim]Cl despite its individual inhibitions. Chemosphere 112:420–426CrossRefGoogle Scholar
  64. Zhang Y, Shen G, Yu Y, Zhu H (2009) The hormetic effect of cadmium on the activity of antioxidant enzymes in the earthworm Eisenia fetida. Environ Pollut 157:3064–3068CrossRefGoogle Scholar
  65. Zhang Y, Zhang F, Zhang G-c, Guan L-z (2013b) Single and combined effects of As (III) and acetochlor on phosphatase activity in soil. J Integr Agric 12:1079–1086CrossRefGoogle Scholar
  66. Zou X, Xiao X, He Y, Hu L, Hu C, Huang X (2017) Hormetic effects of metal ions upon V. fischeri and the application of a new parameter for the quantitative assessment of hormesis. J Hazard Mater 322:454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongli Zhu
    • 1
  • Chenglei Liu
    • 1
  • Yang You
    • 2
  • Jian Liu
    • 1
  • Yanhui Guo
    • 1
  • Jiangang Han
    • 1
    • 3
    Email author
  1. 1.College of Biology and the EnvironmentNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.Beijing Water Science and Technology InstituteBeijingPeople’s Republic of China
  3. 3.Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu ProvinceNanjing Forestry UniversityNanjingPeople’s Republic of China

Personalised recommendations