, Volume 28, Issue 7, pp 763–770 | Cite as

Cytotoxicity of Piper aduncum (Piperaceae) essential oil in brown stink bug Euschistus heros (Heteroptera: Pentatomidae)

  • Jamile F. S. Cossolin
  • Mônica J. B. Pereira
  • Luis C. Martínez
  • Leonardo M. Turchen
  • Muhammad Fiaz
  • Hakan Bozdoğan
  • José Eduardo SerrãoEmail author


Euschistus heros (F.) (Hemiptera: Pentatomidae) is a soybean pest in Brazil, controlled with synthetic chemical insecticides, which may be harmful to the environment and humans, as well as to select pest resistant strains. The research for new pest control strategies such as the use of plant essential oils has been increased due to the selectivity and biodegradation of these molecules. The objective was to evaluate the cytological changes in the salivary glands, fat body and midgut of E. heros exposed to different concentrations of essential oil of Piper aduncum L. (Piperales: Piperaceae), which the main compounds were identified as myristicin 30.03%, aromadendrene 9.20%, dillapiole 8.43%, α-serinene 7.31%, tridecane 6.26%, γ-elemene 4.58% and o-cymene 4.20%. The essential oil of P. aduncum was toxic for E. heros with LD50 = 36.23 mg per insect and LD90 = 50.42 mg per insect. Cytological changes such as tissue disruption, increase in mitochondria population, and glycogen and lipid depletion occur in the fat body cells, whereas salivary glands and midgut are not affected by this essential oil. Results suggest that P. aduncum essential oil causes fat body cellular stress, which may compromise some physiological processes for the insect survival.


Botanical insecticide Fat body Midgut Pest control Salivary glands Toxicity 



We thank to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Brazil), Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) (Brazil), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (Brazil), and Núcleo de Microscopia e Microanálise from Universidade Federal de Viçosa.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell. Garland Science, New York, NYGoogle Scholar
  2. Almeida RRP, Souto RNP, Bastos CN, Silva MHL, Maia JGS (2009) Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem Biodivers 6:1427–1434. CrossRefGoogle Scholar
  3. Alves TJS, Cruz GS, Wanderley-Teixeira V, Teixeira AAC, Oliveira AAJ, Correia V, Câmara CA, Cunha FM (2014) Effects of Piper hispidinervum on spermatogenesis and histochemistry of ovarioles of Spodoptera frugiperda. Biotech Histochem 89:245–255. CrossRefGoogle Scholar
  4. Arrese EI, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. CrossRefGoogle Scholar
  5. Assis A, Brito V, Bittencourt M, Silva L, Oliveira F, Oliveira R (2013) Essential oils composition of four Piper species from Brazil. J Essent Oil Res 25:203–209. CrossRefGoogle Scholar
  6. Attardo GM, Hansen IA, Raikhel AS (2005) Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35:661–675CrossRefGoogle Scholar
  7. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46:446–475. CrossRefGoogle Scholar
  8. Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide induced mitochondrial fission is regulated by dynamin related GTPases in neurons. Embo J 25:3900–3911. CrossRefGoogle Scholar
  9. Bernard CB, Krishnamurty HG, Chauret D, Drust T, Philogene BJR, Sanchez-Vindas P, Hasbun C, Poveda L, San-Román L, Arnason JT (1995) Insecticidal defenses of Piperaceae from the neotropics. J Chem Ecol 21:801–814. CrossRefGoogle Scholar
  10. Castellanos N, Martínez LC, Silva EH, Teodoro AV, Serrão JE, Oliveira EE (2017) Ultrastructural analysis of salivary glands in a phytophagous stink bug revealed the presence of unexpected muscles. Plos One 12:e0179478. CrossRefGoogle Scholar
  11. Costa MS, Santana AE, Oliveira LL, Zanuncio JC, Serrão JE (2017a) Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Manag Sci 73:636–640. CrossRefGoogle Scholar
  12. Costa MS, Paula SO, Martins GF, Zanuncio JC, Santana AEG, Serrão JE (2017b) Modes of action of squamocin in the anal papillae of Aedes aegypti larvae. Physiol Mol Plant P 101:172–177. CrossRefGoogle Scholar
  13. Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA, Sawicki RM (1986) Insecticidal amides with selective potency against a resistant (super-kdr) strain of houseflies (Musca domestica L.). Agr Biol Chem 50:1347–1349. Google Scholar
  14. Estrela JLV, Fazolin M, Catani V, Alécio MR, Lima MS (2006) Toxicidade de óleos essenciais de Piper aduncum e Piper hispidinervum em Sitophilus zeamais. Pesqui Agropec Bras 41:217–222. CrossRefGoogle Scholar
  15. Fazolin M, Estrela J, Catani V, Alécio M, Lima M (2007) Propriedade inseticida dos óleos essenciais de Piper hispidinervum C. DC.; Piper aduncum L. e Tanaecium nocturnum (Barb. Rodr.) Bur. & K. Shum sobre Tenebrio molitor L. 1758. Cienc Agrotec 31:113–120CrossRefGoogle Scholar
  16. Fiaz M, Martinez LC, Costa MS, Cossolin JFS, Plata-Rueda A, Gonçalves WG, Santana AEG, Zancunico JC, Serrão JE (2018) Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotox Environ Safe 156:1–8. CrossRefGoogle Scholar
  17. Finney DJ (1964) Probit Analysis. Cambridge University Press, Cambridge, UKGoogle Scholar
  18. Guedes RNC, Oliveira EE, Guedes NMP, Ribeiro B, Serrão JE (2006) Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais. Physiol Entomol 31:30–38. CrossRefGoogle Scholar
  19. Hegeto LA, Ronqui L, Lapenta AS, Albuquerque FA (2015) Identification and functional characterization of esterases in Euschistus heros (Hemiptera, Pentatomidae) and their relationship with thiamethoxam and lambda-cyhalothrin. Gen Mol Res 14:11079–11088CrossRefGoogle Scholar
  20. Hemingway J, Field L, Vontas J (2002) An overview of insecticide resistance. Science 298:96–97. CrossRefGoogle Scholar
  21. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608. CrossRefGoogle Scholar
  22. Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann NY Acad Sci 1147:283–292. CrossRefGoogle Scholar
  23. Krinski D, Foerster LA (2016) Toxicity of essential oils from leaves of Piperaceae species in rice stalk stink bug eggs, Tibraca limbativentris (Hemiptera: Pentatomidae). Cienc Agrotec 40:676–687. CrossRefGoogle Scholar
  24. Lees G, Burt PE (1988) Neurotoxic actions of a lipid amide on the cockroach nerve cord and on Locust somata maintained in short-term culture: a novel preparation for the study of Na+ channel pharmacology. J Pest Sci 24:189–191Google Scholar
  25. Lichtenstein EP, Casida JE (1963) Myristicin, an insecticide and synergist occurring naturally in the edible parts of parsnips. J Agr Food Chem 11:410–415. CrossRefGoogle Scholar
  26. Lucas KJ, Roy S, Ha J, Gervaise AL, Kokoza VA, Raikhel AS (2015) MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci USA 112:1440–1445CrossRefGoogle Scholar
  27. Martins GF, Serrão JE, Ramalho-Ortigão JM, Pimenta PFP (2011a) Histochemical and ultrastructural studies of the mosquito Aedes aegypti fat body: effects of aging and diet type. Microsc Res Techniq 74:1032–1039. CrossRefGoogle Scholar
  28. Martins GF, Serrão JE, Ramalho-Ortigão JM, Pimenta PFP (2011b) A comparative study of fat body morphology in five mosquito species. Mem Inst Oswaldo Cruz 106:742–747. CrossRefGoogle Scholar
  29. Martínez LC, Plata-Rueda A, Zanuncio JC, Serrão JE (2015) Bioactivity of six plant extracts on adults of Demotispa neivai (Coleoptera: Chrysomelidae). J Insect Sci 15:1–5. CrossRefGoogle Scholar
  30. Misni N, Othman H, Sulaiman S (2011) The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse. Trop Biomed 28:249–258Google Scholar
  31. Miyakado M, Nakayama I, Yoshioka H, Nakatani N (1979) The Piperaceae amides I: structure of pipercide, a new insecticidal amide from Piper nigrum L. Agr. Biol Chem 43:1609–1611. Google Scholar
  32. Nath BS (2003) Shifts in glycogen metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Pestic Biochem Phys 74:73–84. CrossRefGoogle Scholar
  33. Normann TC, Samaranayaka-Ramasamy M (1977) Secretory hyperactivity and mitochondrial changes in neurosecretory cells of an insect. Cell Tissue Res 183:61–69. CrossRefGoogle Scholar
  34. Peiffer M, Felton GW (2014) Insights into the saliva of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Pentatomidae). Plos One 9:e88483. CrossRefGoogle Scholar
  35. Piton LP, Turchen LM, Butnariu AR, Pereira MJB (2014) Natural insecticide based-leaves extract of Piper aduncum (Piperaceae) in the control of stink bug brown soybean. Ciência Rural 44:1915–1920. CrossRefGoogle Scholar
  36. Plata-Rueda A, Martínez LC, Santos MHD, Fernandes FL, Wilcken CF, Soares MA, Serrão JE, Zanuncio JC (2017) Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci Rep 7:46406. CrossRefGoogle Scholar
  37. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–2012CrossRefGoogle Scholar
  38. Ribeiro FC, Richa FS, Erasmo EAL, Matos EP, Costa SJ (2016) Manejo com inseticidas visando o controle de percevejo marrom na soja intacta. J Neotrop Agric 3:48–53. CrossRefGoogle Scholar
  39. Sanini C, Massarolli A, Krinski D, Butnariu AR (2017) Essential oil of spiked pepper, Piper aduncum L. (Piperaceae), for the control of caterpillar soybean looper, Chrysodeixis includens Walker (Lepidoptera: Noctuidae). Braz J Botany 40:399–404. CrossRefGoogle Scholar
  40. SAS Institute (2002) The SAS system for windows, release 9.0. SAS Institute, Cary, NCGoogle Scholar
  41. Scott IM, Jensen HR, Philogène BJR, Arnason JT (2008) A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochem Rev 7:65. CrossRefGoogle Scholar
  42. Scudeler EL, Garcia ASG, Padovani CR, Pinheiro PFF, dos Santos DC (2016) Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri. Micron 80:96–111. CrossRefGoogle Scholar
  43. Silva CC, Laumann RA, Blassioli MC, Pareja M, Borges M (2008) Euschistus heros mass rearing technique for the multiplication of Telenomus podisi. Pesq Agropec Bras 43:575–580CrossRefGoogle Scholar
  44. Simmonds MSJ, Manlove JD, Khambay BPS (2002) Effects of selected botanical insecticides on the behavior and mortality of the glasshouse whitefly Trialeurodes vaporariorum and the parasitoid Encarsia formosa. Entomol Exp Appl 102:39–47. CrossRefGoogle Scholar
  45. Sosa-Gomez DR, Corso IC, Morales L (2001) Insecticide resistance to endosulfan, monocrotophos and metamidophos in the Neotropical brown stink bug, Euschistus heros (F). Neotrop. Entomol 30:317–320. CrossRefGoogle Scholar
  46. Sosa-Gomez DR, Silva JJ (2010) Neotropical brown stink bug (Euschistus heros) resistance to methamidophos in Paraná, Brazil. Pesqui Agropec Bras 45:767–769. CrossRefGoogle Scholar
  47. Souto RNP, Harada AY, Andrade EHA, Maia JGS (2012) Insecticidal activity of Piper essential oils from the amazon against the fire ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop Entomol 41:510–517. CrossRefGoogle Scholar
  48. Srivastava S, Gupta MM, Prajapati V, Tripathi AK, Kumar S (2001) Insecticidal activity of Myristicin from Piper mullesua. Pharm Biol 39:226–229. CrossRefGoogle Scholar
  49. Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174. CrossRefGoogle Scholar
  50. Turchen LM, Piton LP, Dall’Oglio EL, Butnariu AR, Pereira MJB (2016) Toxicity of Piper adcuncum (Piperaceae) essential oil against Euschistus heros F. (Hemiptera:Pentatomidae) and non-effect on egg parasitoids. Neotrop Entomol 45:604–611. CrossRefGoogle Scholar
  51. Volpe XLH, Fazolin M, Garcia RB, Magnani RF, Barbosa JC, Miranda MP (2015) Efficacy of essential oil of Piper aduncum against nymphs and adults of Diaphorina citri. Pest Manag Sci 72:1242–1249. CrossRefGoogle Scholar
  52. Youssef AI, Nasr FN, Stefanos SS, Elkhair SSA, Shehata WA, Agamy E, Herz A, Hassan SA (2004) The side-effects of plant protection products used in olive cultivation on the hymenopterous egg parasitoid Trichogramma cacoeciae Marchal. J Appl Entomol 128:593–599. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament of General BiologyUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departament of AgronomyUniversidade Estadual do Mato GrossoTangará da SerraBrazil
  3. 3.Departament of EntomologyUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Department of Plant and Animal Production, Kirsehir Vocational School of Technicial SciencesKirsehir Ahi Evran UniversityKirsehirTurkey

Personalised recommendations