, Volume 28, Issue 7, pp 744–753 | Cite as

Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae)

  • Cynthia R. O. JacobEmail author
  • José B. Malaquias
  • Odimar Z. Zanardi
  • Carina A. S. Silva
  • Jessica F. O. Jacob
  • Pedro T. Yamamoto


Wild and managed bees are essential for crop pollination and food production. However, the widespread use of insecticides such as neonicotinoids may affect the survival, development, behavior, and maintenance of bee colonies. Therefore, in this study we evaluated the impacts of three neonicotinoid insecticides on the survival and walking abilities of the Africanized honeybee A. mellifera and stingless bee S. postica. A. mellifera was more susceptible than S. postica to all neonicotinoids tested. The median lethal concentrations LC50 values estimated for acetamiprid, imidacloprid, and thiacloprid were 189.62, 22.78, and 142.31 ng µL–1 of diet for A. mellifera, and 475.94, 89.11, and 218.21 ng µL–1 of diet for S. postica, respectively. All tested neonicotinoids affected the speed, distance traveled, duration and frequency of resting, and continuous mobility of both bee species. The results showed that in spite of the different susceptibility to compounds with cyano and nitro radicals, the behavioral variables showed different levels of commitment according to the molecule insecticide and bee species. These results contribute not only to the understanding of the effects of neonicotinoid insecticides on A. mellifera and S. postica, but also to help in the development of protocols that aim to reduce the impact of these insecticides in Neotropical environments.


Africanized honeybee Stingless bee Susceptibility Motor impairment Conservation 



The authors gratefully acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, for financial support and scholarships. The authors thank Paulo César Candelori for assistance with the collect A. mellifera combs and are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), for the resources provided to the Laboratory of Insect Ecology (FAPESP process: 2014/16607-9) and for the second author (FAPESP process: 2018/20435-5, 2017/05953-7, 2015/20380-8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The authors agree with the publication of the manuscript in this form.


  1. Aliouane Y, Hassani AKE, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ Toxicol Chem 28:113–122CrossRefGoogle Scholar
  2. Alkassab AT, Kirchner WH (2017) Sublethal exposure to neonicotinoids and related side effects on insect pollinators: honeybees, bumblebees, and solitary bees. J Plant Dis Protect 124:1–30CrossRefGoogle Scholar
  3. Alptekin S, Bass C, Nicholls C, Paine MJ, Clark SJ, Field L, Moores GD (2016) Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up‐regulation of detoxification genes. Insect Mol Biol 25:171–180CrossRefGoogle Scholar
  4. Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334CrossRefGoogle Scholar
  5. Ascher JS, Pickering J (2018) Discover life: bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). Accessed 13 Feb 2018
  6. Barbosa WF, Smagghe G, Guedes RNC (2015) Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71:1049–1053CrossRefGoogle Scholar
  7. Bonmatin JM, Moineau I, Charvet R, Fleche C, Colin ME, Bengsch ER (2003) A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal Chem 75:2027–2033CrossRefGoogle Scholar
  8. Box GEP, Cox DR (1964) An analysis of transformations. J R Soc 26:211–252Google Scholar
  9. Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J Insect Physiol 86:40–47CrossRefGoogle Scholar
  10. Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattelle DB (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem 99:608–615CrossRefGoogle Scholar
  11. Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]‐acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag Sci 61:742–748CrossRefGoogle Scholar
  12. Çakmak İ, Hranitz JM, Blatzheim L, Bower CD, Polk T, Levinson B, Wells H (2018) Effects of thiamethoxam on the behavior of foraging honey bees with artificial flower choices. Bee J 18:2–13Google Scholar
  13. Casida JE (2011) Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem 59:2923–2931CrossRefGoogle Scholar
  14. Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62:578–582Google Scholar
  15. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  16. Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li Y, Wheeler JG, Laycock I, Pook CJ, Ibarra NH, Smirnoff N, Tyler CR (2012) Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115:365–371CrossRefGoogle Scholar
  17. Dai YJ, Ji WW, Chen T, Zhang WJ, Liu ZH, Ge F, Yuan S (2010) Metabolism of the neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. J Agric Food Chem 58:2419–2425CrossRefGoogle Scholar
  18. Decourtye A, Devillers J (2010) In: Tany SH (ed) Ecotoxicity of neonicotinoid insecticides to bees, in Insect nicotinic acetylcholine receptors. Springer, New York, NY, pp 85–95CrossRefGoogle Scholar
  19. Decourtye A, Lacassie E, Pham‐Delègue MH (2003) Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59:269–278CrossRefGoogle Scholar
  20. Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16CrossRefGoogle Scholar
  21. Devillers J, Decourtye A, Budzinski H, Pham-Delegue MH, Cluzeau S, Maurin G (2003) Comparative toxicity and hazards of pesticides to Apis and non-Apis bees. A chemometrical study. SAR QSAR Environ Res 14:389–403CrossRefGoogle Scholar
  22. El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54:653–661CrossRefGoogle Scholar
  23. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid use in crop protection. Pest Manag Sci 64:1099–1105CrossRefGoogle Scholar
  24. Ellis JD, Evans JD, Pettis J (2010) Colony losses, managed colony population decline, and colony collapse disorder in the United States. J Apic Res 49:134–136CrossRefGoogle Scholar
  25. Fischer J, Mueller T, Spatz AK, Greggers U, Gruenewald B, Menzel R (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PloS ONE 9:e91364CrossRefGoogle Scholar
  26. Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R, Kuhlmann M, Kleijn D, Klein AM, Kremen C, Morandin L, Scheper J, Winfree R (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12:439–447CrossRefGoogle Scholar
  27. Gonalons C, Farina WM (2015) Effects of sublethal doses of imidacloprid on young adult honeybee behaviour. PloS ONE 10:e0140814CrossRefGoogle Scholar
  28. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957CrossRefGoogle Scholar
  29. Haddad N (2011) Honey bee viruses, diseases and hive management in the Middle East and their relation to the colony collapse disorder and bee losses. Uludag Bee J 11:17–24Google Scholar
  30. Imperatriz-Fonseca VL, Nunes-Silva P (2010) As abelhas, os serviços ecossistêmicos e o Código Florestal Brasileiro. Biota Neotrop 10:59–62CrossRefGoogle Scholar
  31. Iqbal J, Alqarni AS, Raweh HSA (2018) Effect of sub-lethal doses of imidacloprid on learning and memory formation of indigenous Arabian bee (Apis mellifera jemenitica Ruttner) adult foragers. Neotrop Entomol 48:1–8Google Scholar
  32. Iwasa T, Motoyama N, Ambrose JT, Roe RM (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378CrossRefGoogle Scholar
  33. Jacob CRO, Zanardi OZ, Malaquias JB, Silva CAS, Yamamoto PT (2019) The impact of four widely used neonicotinoid insecticides on Tetragonisca angustula (Latreille) (Hymenoptera: Apidae). Chemosphere 224:65–70CrossRefGoogle Scholar
  34. Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908CrossRefGoogle Scholar
  35. Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434CrossRefGoogle Scholar
  36. Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity—USA. Apidologie 41:312–331CrossRefGoogle Scholar
  37. Karahan A, Çakmak I, Hranitz JM, Karaca I, Wells H (2015) Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology 24:2017–2025CrossRefGoogle Scholar
  38. Kerr WE, Carvalho GA, Silva AC, Assis MGP (2010) Aspectos pouco mencionados da biodiversidade amazônica. Parcerias Estratégicas 12:20–41Google Scholar
  39. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313CrossRefGoogle Scholar
  40. Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314CrossRefGoogle Scholar
  41. Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid‐induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134CrossRefGoogle Scholar
  42. Lu C, Warchol KM, Callahan RA (2014) Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull Insectol 67:125–130Google Scholar
  43. Manjon C, Troczka BJ, Zaworra M, Beadle K, Randall E, Hertlein G, Singh KS, Zimmer CT, Homem RA, Lueke B, Reid R, Kor L, Kohler M, Benting J, Williamson MS, Davies TGE, Field LM, Bass C, Nauen R (2018) Unraveling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr Biol 28:1137–1143CrossRefGoogle Scholar
  44. MAPA, Ministério da Agricultura, Pecuária e Abastecimento (2018) AGROFIT: sistema de Agrotóxicos Fitossanitários. MAPA/CGAF/DFIA/DAS, Brasília, Brazil.
  45. Nauen R, Ebbinghaus‐Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586CrossRefGoogle Scholar
  46. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49:1–6CrossRefGoogle Scholar
  47. OECD (Organization for Economic Co-operation and Development). Guidelin es for testing of chemicals Number 214 (1998) Honeybees, acute oral toxicity test. Environmental health safety division, Organization for Economic Co-operation and Development, Paris, FranceGoogle Scholar
  48. Palladini JD, Maron JL (2014) Reproduction and survival of a solitary bee along native and exotic floral resource gradients. Oecologia 176:789–798CrossRefGoogle Scholar
  49. Peng YC, Yang EC (2016) Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci Rep 6:19298CrossRefGoogle Scholar
  50. Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, van Lexmond MB, Bonmatin JM (2017) An update of the worldwide integrated assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res 1‒49.
  51. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res Int 22:68–102CrossRefGoogle Scholar
  52. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353CrossRefGoogle Scholar
  53. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Google Scholar
  54. Sánchez-Bayo F, Belzunces L, Bonmatin JM (2017) Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis mellifera). Ecotoxicology 26:1199–1206CrossRefGoogle Scholar
  55. SAS Institute (2011) Statistical analysis system: getting started with the SAS learning. Version 9.2. SAS Institute, CaryGoogle Scholar
  56. Silva MB, Nocelli RCF, Soares HM, Malaspina O (2016) Efeitos do imidacloprido sobre o comportamento das abelhas Scaptotrigona postica Latreille, 1807 (Hymenoptera, Apidae). Ciênc Tecnol Ambient 3:21–28Google Scholar
  57. Simon-Delso N, Stark JD, van der Sluijs JP, van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102CrossRefGoogle Scholar
  58. Soares HM, Jacob CRO, Carvalho SM, Nocelli RCF, Malaspina O (2015) Toxicity of imidacloprid to the stingless bee Scaptotrigona postica Latreille, 1807 (Hymenoptera: Apidae). Bull Environ Contam Toxicol 94:675–680CrossRefGoogle Scholar
  59. Staveley JP, Law SA, Fairbrother A, Menzie CA (2014) A causal analysis of observed declines in managed honey bees (Apis mellifera). Hum Ecol Risk Assess 20:566–591CrossRefGoogle Scholar
  60. Tadei R, Domingues CEC, Malaquias JB, Camilo EV, Malaspina O, Silva-Zacarin ECM (2019) Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci Rep 9:3277CrossRefGoogle Scholar
  61. Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC (2015) A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci Rep 5:10989CrossRefGoogle Scholar
  62. Teeters BS, Johnson RM, Ellis MD, Siegfried BD (2012) Using video‐tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem 31:1349–1354CrossRefGoogle Scholar
  63. Thompson H (2016) Extrapolation of acute toxicity across bee species. Integr Environ Assess Manag 12:622–626CrossRefGoogle Scholar
  64. Thorp RW (1979) Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen. Ann Mo Bot Gard 66:788–812CrossRefGoogle Scholar
  65. Tison L, Hahn ML, Holtz S, Rößner A, Greggers U, Bischoff G, Menzel R (2016) Honey bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ Sci Technol 50:7218–7227CrossRefGoogle Scholar
  66. Tison L, Holtz S, Adeoye A, Kalkan Ö, Irmisch NS, Lehmann N, Menzel R (2017) Effects of sublethal doses of thiacloprid and its formulation Calypso® on the learning and memory performance of honey bees. J Exp Biol 220:3695–3705CrossRefGoogle Scholar
  67. Tomé HVV, Barbosa WF, Corrêa AS, Gontijo LM, Martins GF, Guedes RNC (2015) Reduced‐risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann Appl Biol 167:186–196CrossRefGoogle Scholar
  68. Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS ONE 7:e38406CrossRefGoogle Scholar
  69. Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364CrossRefGoogle Scholar
  70. Tomizawa M, Otsuka H, Miyamoto T, Eldefrawi ME, Yamamoto I (1995) Pharmacological characteristics of insect nicotinic ion channel and the comparison of the effect of nicotinoids and neonicotinoids. J Pestic Sci 20:57–64CrossRefGoogle Scholar
  71. Valdovinos-Núñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Ruiz Sánchez E (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102:1737–1742CrossRefGoogle Scholar
  72. Williamson SM, Willis SJ, Wright GA (2014) Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23:1409–1418CrossRefGoogle Scholar
  73. Yue M, Luo S, Liu J, Wu J (2018) Apis cerana is less sensitive to most neonicotinoids, despite of their smaller body mass. J Econ Entomol 111:39–42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Entomology and Acarology“Luiz de Queiroz” College of Agriculture/University of São Paulo (ESALQ/USP)PiracicabaBrazil
  2. 2.Department of EntomologyFund for Citrus Protection (FUNDECITRUS)AraraquaraBrazil

Personalised recommendations