Advertisement

Exposure to herbicide linuron results in alterations in hematological profile and stress biomarkers of common carp (Cyprinus carpio)

  • Hanna Lutnicka
  • Bartosz BojarskiEmail author
  • Małgorzata Witeska
  • Barbara Tombarkiewicz
  • Grzegorz Formicki
Article

Abstract

Phenylurea herbicides such as linuron are commonly applied in agriculture. Common carp juveniles were subjected to 31.5 µg/L of linuron for 14 days, and then to 30 days of purification. Peripheral blood was sampled after 1, 3, 7 and 14 days of exposure and 7, 14 and 30 days of purification and hematological parameters were evaluated: erythrocyte (RBCc) and leukocyte (WBCc) counts, hematocrit (Ht), hemoglobin concentration (Hb), mean cell volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and differential leukocyte count. For evaluation of cortisol and catecholamine concentrations blood was sampled after 3, 6 and 12 h, after 1, 3 and 14 days of exposure, and after 30 days of purification. Linuron caused mainly transient increase in RBCc, Ht and MCV values and increase in WBCc and percentage of juvenile neutrophils. The herbicide caused persistant increase of cortisol and catecholamine concentrations. The results indicate that exposure to low concentration of linuron induced a stress response in common carp.

Keywords

Fish Pesticide Blood Cortisol Catecholamines 

Notes

Acknowledgements

This study has been supported by grant N N304 279440 (National Science Center, Poland), University Centre of Veterinary Medicine UJ-UA in Krakow and DS 3263/ZWRiDZ (Department of Veterinary Science, Animal Reproduction and Welfare, University of Agriculture in Krakow, Poland).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The authors declare that this experiment was carried out with the highest ethical standards.

References

  1. Achilli G, Cellerino GP, D’eril GM, Bird S (1995) Simultaneous determination of 27 phenols and herbicides in water by high-performance liquid chromatography with multielectrode electrochemical detection. J Chromatogr 697:357–362CrossRefGoogle Scholar
  2. Adhikari S, Sarkar B, Chatterjee A, Mahaparta CT, Ayyappan S (2004) Effects of cypermethrin and carbofuran on certain hematological parameters and prediction of their recovery in a freshwater teleosts, Labeo rohita (Hamilton). Ecotoxicol Environ Saf 58:220–226CrossRefGoogle Scholar
  3. Barcellos LJG, Kreutz LC, de Souza C, Rodrigues LB, Fioreze I, Quevedo RM, Cericato L, Soso AB, Fagundes M, Conrad J, de Almeida Lacerda L, Terra S (2004) Hematological changes in jundia (Rhamdia quelen Quoy and Gaimard Pimelodidae) after acute and chronic stress caused by usual aquacultural management, with emphasis on immunosuppressive effects. Aquaculture 237:229–236CrossRefGoogle Scholar
  4. Bojarski B, Ludwikowska A, Kurek A, Pawlak K, Tombarkiewicz B, Lutnicka H (2015) Hematological alterations in common carp (Cyprinus carpio L.) exposed to herbicides: pendimethalin and ethofumesate tested separately and in mixture. Folia Biol 63:167–174CrossRefGoogle Scholar
  5. Caux PY, Kent RA, Fan GT, Grande C (1998) Canadian water quality guidelines for linuron. Environ Toxicol 13:1–41Google Scholar
  6. Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valerio MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and ground waters. Water Res 37:1055–1063CrossRefGoogle Scholar
  7. Cericato L, Neto JGM, Fagundes M, Kreutz LC, Quevedo RM, Finco J, da Rosa JGS, Koakoski G, Centenaro L, Pottker E, Anziliero D, Barcellos LJG (2008) Cortisol response to acute stress in jundia Rhamdia quelen acutely exposed to sub-lethal concentrations of agrichemicals. Comp Biochem Physiol C 148:281–286Google Scholar
  8. Clark GM, Goolsby DA (2000) Occurrence and load of selected herbicides and metabolites in the Mississippi River. Sci Total Environ 248:101–113CrossRefGoogle Scholar
  9. Crestani M, Menezes C, Glusczak L, Miron D, Dos Santos Miron D, Lazzari L, Duarte MF, Morsch VM, Pippi AL, Vieira VP (2006) Effects of clomazone herbicide on hematological and some parameters of protein and carbohydrate metabolism of silver catfish Rhamdia quelen. Ecotoxicol Environ Saf 65:48–55CrossRefGoogle Scholar
  10. Croll BT (1991) Pesticides in surface water and ground waters. J Ins Water Environ Manag 5:389–395CrossRefGoogle Scholar
  11. Dobsikova R, Blahova J, Modra H, Skoric M, Svobodova Z (2011) The effect of acute exposure to herbicide Gardoprim Plus Gold 500 SC on haematological and biochemical indicators and histopathological changes in common carp (Cyprinus carpio L.). Acta Vet Brno 80:359–363CrossRefGoogle Scholar
  12. Do Carmo Langiano V, Martinez CBR (2008) Toxicity and effects of a glyphosate-based herbicides on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C 147:222–231Google Scholar
  13. Fazio F, Piccione G, Arfuso F, Faggio C (2015) Peripheral blood and head kidney haematopoietic tissue response to experimental blood loss in Mullet (Mugil cephalus). Mar Biol Res 11:197–202CrossRefGoogle Scholar
  14. Fiorino E, Sehonova P, Plhalova L, Blahova J, Svobodova Z, Faggio C (2018) Effect of glyphosate on early life stages: comparison between Cyprinus carpio and Danio rerio. Environ Sci Poll Res  https://doi.org/10.1007/s11356-017-1141-5 (in press)
  15. Ghaffar A, Hussain R, Khan A, Abbas RZ, Asad M (2015) Butachlor induced clinico-hematological and cellular changes in fresh water fish Labeo rohita (Rohu). Pak Vet J 35:201–206Google Scholar
  16. Glusczak L, Dos Santos Miron D, Moraes BS, Simoes RR, Schetinger MRC, Morsch VM, Loro VL (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol 146:519–524Google Scholar
  17. Herrero-Hernandeza E, Andradesb MS, Alvarez-Martina A, Pose-Juana E, Rodriguez-Cruza MS, Sanchez-Martina MJ (2013) Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J Hydrol 486:234–245CrossRefGoogle Scholar
  18. Kreutz LC, Barcellos LJG, De Faria Valle S, De Oliveira Silva T, Anziliero D, Dos Santos ED, Pivato M, Zanatta R (2011) Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish Shellfish Immunol 30:51–57CrossRefGoogle Scholar
  19. Li ZH, Velisek J, Grabic R, Li P, Kolarova J, Randak T (2011) Use of hematological and plasma biochemicalparameters to assess the chronic effects of a fungicide propiconazole on a freshwater teleost. Chemosphere 83:572–578CrossRefGoogle Scholar
  20. Lutnicka H, Bojarski B, Ludwikowska A, Wronska D, Kaminska T, Szczygiel J, Troszok A, Szambelan K, Formicki G (2016) Hematological alterations as a response to exposure to selected fungicides in common carp (Cyprinus carpio L.). Folia Biol 64:235–244CrossRefGoogle Scholar
  21. Marlatt VL, Loa BP, Ornostay A, Hogan NS, Kennedy CJ, Elphick JR, Martyniuk CJ (2013) The effects of the urea-based herbicide linuron on reproductive endpoints in the fathead minnow (Pimephales promelas). Comp Biochem Physiol Toxicol Pharmacol 157:24–32CrossRefGoogle Scholar
  22. Modesto KA, Martinez CBR (2010) Effects of Roundup Transorb in fish: hematology, antioxidant defenses and acetylocholinesterase activity. Chemosphere 81:781–787CrossRefGoogle Scholar
  23. Oulmi Y, Negele RD, Braunbeck T (1995) Cytopathology of liver and kidney in rainbow trout Oncorhynchus mykiss after long-term exposure to sublethal concentrations of linuron. Dis Aquat Org 21:35–52CrossRefGoogle Scholar
  24. Patzold S, Klein C, Brummer GW (2007) Run-off transport of herbicides during natural and simulated rainfall and its reduction by vegetated filter strips. Soil Use Manag 23:294–305CrossRefGoogle Scholar
  25. Ramesh M, Srinivasan R, Saravanan M (2009) Effect of atrazine (herbicide) on blood parameters of common carp Cyprinus carpio (Actinopterygii: Cypriniformes). African. J Environ Sci Technol 3:453–458Google Scholar
  26. Sadowski J, Kucharski M (2007) Monitoring the state of herbicidal contamination in surface and ground water in agricultural areas. Stud Rep IUNG-PIB 8:87–94Google Scholar
  27. Sadowski J, Kucharski M, Dziagwa M (2014) Influence of changes in the scope of registered plant protection products on the level of herbicide contamination of waters in agricultural areas. Progr Plant Prot 54:191–197Google Scholar
  28. Sancho E, Ceron JJ, Ferrando MD (2000) Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol Environ Saf 46:81–86CrossRefGoogle Scholar
  29. Schafer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285CrossRefGoogle Scholar
  30. Sehonova P, Plhalova L, Blahova J, Doubkova V, Marsalek P, Prokes M, Tichy F, Skladana M, Fiorino E, Mikula P, Vecerek V, Faggio C, Svobodova Z (2017) Effects of selected tricyclic antidepressants on early-life stages of common carp (Cyprinus carpio). Chemosphere 185:1072–1080CrossRefGoogle Scholar
  31. Soso AB, Barcellos LJG, Ranzani-Paiva MJ, Kreutz LC, Quevedo RM, Anziliero D, Lima M, da Silva LB, Ritter F, Bedin AC, Finco JA (2007) Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affect reproduction of Jundia (Rhamdia quelen). Environ Toxicol Pharmacol 23:308–313CrossRefGoogle Scholar
  32. Svobodova Z, Luskova V, Drastichova J, Svoboda M, Zlabek V (2003) Effect of deltamethrin on haematological indices of common carp (Cyprinus carpio L.). Acta Vet Brno 72:79–95CrossRefGoogle Scholar
  33. Tierney KB, Ross PS, Kennedy CJ (2007) Linuron and carbaryl differentially impair baseline amino acid and bile salt olfactory responses in three salmonids. Toxicology 231:175–187CrossRefGoogle Scholar
  34. Torre A, Trischitta F, Faggio C (2013) Effect of CdCl2 on regulatory volume decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicol Vitr 27:1260–1266CrossRefGoogle Scholar
  35. Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375CrossRefGoogle Scholar
  36. Tran ATK, Hyne RV, Doble P (2007) Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC. Chemosphere 67:944–953CrossRefGoogle Scholar
  37. Van Den Brink PJ, Hartgers EM, Fettweis U, Crum SJH, Van Donk E, Brock TCM (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. Ecotoxicol Environ Saf 38:13–24CrossRefGoogle Scholar
  38. Van Der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmentalrisk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  39. Velisek J, Sudova E, Machova J, Svobodova Z (2010) Effects of sub-chronic exposure to terbutryn in common carp (Cyprinus carpio L.). Ecotoxicol Environ Saf 73:384–390CrossRefGoogle Scholar
  40. Velisek J, Svobodova Z, Piackova V, Sudova E (2009) Effect of acute exposure to metribuzin on some hematological, biochemical and histological parameters of common carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 82:492–495CrossRefGoogle Scholar
  41. Wendelaar Bonga S (1997) The stress response in fish. Phys Rev 77:591–625Google Scholar
  42. Witeska M, Jezierska B, Wolnicki J (2006) Respiratory and hematological response of tench Tinca tinca (L.) to a short-term cadmium exposure. Aquacult Int 14:141–152CrossRefGoogle Scholar
  43. Witeska M, Kondera E, Szczygielska K (2011) The effects of cadmium on common carp erythrocyte morphology. Pol J Environ Stud 20:783–788Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hanna Lutnicka
    • 1
  • Bartosz Bojarski
    • 2
    Email author
  • Małgorzata Witeska
    • 2
  • Barbara Tombarkiewicz
    • 3
  • Grzegorz Formicki
    • 4
  1. 1.Institute of Veterinary Science, University Centre of Veterinary MedicineUniversity of Agriculture in KrakowKrakowPoland
  2. 2.Department of Animal Physiology, Institute of BiologySiedlce University of Natural Sciences and HumanitiesSiedlcePoland
  3. 3.Department of Veterinary Science, Animal Reproduction and WelfareUniversity of Agriculture in KrakowKrakowPoland
  4. 4.Department of Animal Physiology and Toxicology, Institute of BiologyPedagogical University of KrakowKrakowPoland

Personalised recommendations