Advertisement

Ecotoxicology

, Volume 28, Issue 1, pp 13–25 | Cite as

From collection to discharge: physical, chemical, and biological analyses for fish farm water quality monitoring

  • Jéssica Pereira de Souza
  • Juliana Caroline Vivian Sposito
  • Bruno do Amaral Crispim
  • Fabiane Gomes da Silva
  • Kelly Mari Pires de Oliveira
  • Fábio Kummrow
  • Valter Aragão do Nascimento
  • Cassiana Carolina Montagner
  • Lucilene Finoto Viana
  • Julio César Jut Solórzano
  • Alexeia BarufattiEmail author
Article

Abstract

The use of chemical substances for the management of fish farming activities may compromise the quality of the tank water itself and of water bodies that receive the effluents. As studies that assess the environmental effect caused by pisciculture are scarce, the present study aimed at evaluating the water quality in two fish farms in the region of Grande Dourados, Brazil, from the site of water collection to the site of water disposal. The tools used for this purpose were the analysis of land use and cover and the determination of physical, chemical, and biological parameters of water samples. Maps of land use and cover were created, and water samples were collected at four sampling sites in two fish farms. The Allium cepa test, assays with Astyanax lacustris, and the Salmonella/microsome assay were performed. In addition, physical and chemical parameters were measured and metal and emerging contaminants in the water samples were investigated. The A. lacustris demonstrated the genotoxicity and the Salmonella/microsome assay suggested the mutagenic potential of water samples from the fish farms and indicated higher genotoxicity in the disposal tanks than in the collection tanks of the Brilhante fish farm. However, all the samples at the Dourados fish farm were genotoxic, and mutagenicity was shown to start at the water collection site. With regard to the A. cepa test, there was no statistical difference between the collection sites in both fish farms. Moreover, the observed genetic damage may be associated with the presence of metals and emerging contaminants in the water samples, which suggests that these chemicals have potential genotoxic and mutagenic effects that are related to the type of land use and cover in the area of the region studied. Considering that contaminated waters can potentially disturb the structure and functioning of natural ecosystems, the present study demonstrated the importance of treating fish farm effluent to minimize the negative effect of this activity on water bodies.

Keywords

Ecotoxicological assessment Land use and cover Emerging contaminants Metals Fish farm effluents 

Notes

Acknowledgements

We thank the Foundation to Support the Development of Teaching, Science and Technology fs the State of Mato Grosso do Sul (Fundect) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support, as well as Yzel Rondon Súarez and Lilian Silvia Cândido for their assistance during the study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2018_1991_MOESM1_ESM.doc (71 kb)
Supplementary Information

References

  1. Acayaba RD (2015) Ocorrência de agrotóxicos usados na cana de açúcar em corpos de água do Estado de São Paulo: subsídios para avaliação de risco para vida aquática. Dissertation. Faculdade de Tecnologia. Universidade Estadual de Campinas, CampinasGoogle Scholar
  2. Agência Nacional de Águas–ANA (2012) Programa Nacional de Avaliação da Qualidade das Águas (PNQA), p 222Google Scholar
  3. Boughton EH, Quintana-Ascencio PF, Bohlen PJ, Fauth JE, Jenkins DG (2016) Interactive effects of pasture management intensity, release from grazing and prescribed fire on forty subtropical wetland plant assemblages. J Appl Ecol 53:159–170Google Scholar
  4. Bucker A, Carvalho W, Alves-Gomes JA (2006) Avaliação da mutagênese e genotoxidade em Eigenmannia virescens (Teleostei: Gymnotiformes) expostos ao benzeno. Acta Amaz 36(3):354–364Google Scholar
  5. Cardoso AS, El-Deir SG, Cunha MCC (2016) Bases da sustentabilidade para atividade de piscicultura no semiárido de Pernambuco. Interações 17(4):645–653Google Scholar
  6. Carmo DA, Carmo APB, Pires JMB, Oliveira JLM (2013) Comportamento ambiental e toxidade dos herbicidas atrazina e simazina. Rev Ambient Água 8(1):133–143Google Scholar
  7. Castro EB, Santos LDT, Fernandes LA, Tajima CY (2016) Silicato de alumínio em substrato para produção de mudas de Corymbia citriodora. Floresta e Ambient 23(2):229–236Google Scholar
  8. Christofoletti CA, Pedro-Escher J, Fontanetti CS (2013) Assessment of the genotoxicity of two agricultural residues after processing by diplopods using the Allium cepa assay. Water Air Soil Pollut 224(1523):1–14Google Scholar
  9. CONAMA-Conselho Nacional do Meio Ambiente—Resolução 357/2005 (2005) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Available in: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf
  10. Costa CR, Olivi P, Botta CMR, Espindola EIG (2008) A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Quím Nova 31(7):1820–1830Google Scholar
  11. Costa CC, Gomes LJ, Almeida AP (2014) Seleção de indicadores de sustentabilidade em fragmentos florestais de Mata Atlântica na bacia hidrográfica do Rio Poxim-SE por meio do geoprocessamento. ResearchGate 18(1):209–219Google Scholar
  12. Costa RMA, Menk CFM (2012) Biomonitoramento de mutagênese ambiental. Biotecnologia: Ciência e Desenvolvimento 3:24–26Google Scholar
  13. ESRI (2015). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research InstituteGoogle Scholar
  14. EPA - United States Environmental Protection National (2016) Recommended Water Quality Criteria - Aquatic Life Criteria Table Agency. Available in: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table
  15. Farias JF, Silva EV, Rodriguez JMM (2013) Aspectos do uso e ocupação do solo no semiárido cearense: análise espaço temporal (1985-2011) sob o viés da geoecologia das paisagens. Rev Bras De Geogr Física 6(2):136–147Google Scholar
  16. Franco-Bernardes MF, Maschio LR, Azeredo-Oliveira MTV, Almeida EA (2015) The use of biomarkers to study the effects of the mixture of diuron and hexazinone on small and large O. niloticus. Ecotoxicol Environ Contam 10(1):83–92Google Scholar
  17. Granada L, Sousa N, Lopes S, Lemos MFL (2015) Is integrated multitrophic aquaculture the solution to the sectors’ major challenges? – a review. Rev Aquac 6:1–18Google Scholar
  18. Grossberger A, Hadar Y, Borch T, Chefetz B (2014) Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ Pollut 185:168–177Google Scholar
  19. Harnisz M, Korzeniewska E, Golás I (2015) The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere 128:134–141Google Scholar
  20. Heddle JA, Hite M, Kirkhart B, Mavournin K, Mcgregor JT, Newell GW, Salamone NF (1983) The induction of micronuclei as a mensure genotoxicity. Mutat Res 123:61–118Google Scholar
  21. IBGE–Instituto Brasileiro de Geografia e Estatística (2013) Produção da Pecuária Municipal, 41:108Google Scholar
  22. Iqbal M, Nisar J, Adil M, Abbas M, Riaz M, Tahir MA, Younus M, Shahid M (2017) Mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of bioassays. Chemosphere 168:590–598Google Scholar
  23. Iturburu FG, Zomisch M, Panzeri AM, Crupkin AC, Contardo-Jara V, Pflugmacher S, Menone ML (2016) Uptake, distribution in diferente tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ Toxicol Chem 9999:1–10Google Scholar
  24. Kado NY, Langley D, Eisenstadt. (1983) A simple modification of the Salmonella liquid incubation assay. Mutat Res 121:25–32Google Scholar
  25. Kalantzi I, Shimmield TM, Pergantis AS, Papageorgiou N, Black KD, Karakassis I (2013) Heavy metals, trace elements and sediment geochemistry at four Mediterranean fish farms. Sci Total Environ 444:128–137Google Scholar
  26. Kieling-Rubio MA, Benvenuti T, Costa GM, Petry CT, Rodrigues MAS, Schmitt JL (2015) Integrated environmental assessment of streams in the Sinos river basin in the state of Rio Grande do Sul, Brazil. Braz J Biol 75(2):105–113Google Scholar
  27. Kousar S, Javed M (2015) Studies on induction of nuclear abnormalities in peripheral blood erythrocytes of fish exposed to copper Turk J Fish Aquat Sci 15:879–886Google Scholar
  28. Kumar R, Nagpure NS, Kushwaha B, Srivastava SK, Lakra WS (2010) Investigation of the genotoxicity of malathion to freshwater teleost fish Channa punctatus (Bloch) using the micronucleus test and comet assay. Arch Environ Contam 58:123–130Google Scholar
  29. Lari SZ, Khan NA, Gandhi KN, Meshram TS, Thacker NP (2014) Comparison of pesticide residues in surfasse water and ground water of agriculture intensive areas. J Environ Health Sci Eng 12(11):1–7Google Scholar
  30. Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81Google Scholar
  31. Machado KC, Grassi MT, Vidal C, Pescara IC, Jardim RW, Fernandes NA, Sodré FF, Almeida FV, Santana JS, Canela MC, Nunes CRO, Bichinho KM, Severo FJR (2016) A preliminary nationwide survey of the presence of emerging contaminants in drinking and source Waters in Brazil. Sci Total Environ 572:138–146Google Scholar
  32. Makinwa T, Uadia P (2017) Occurrence of bisphenol A (BPA) in ponds, rivers and lagoons in South-Western Nigeria and uptake in cat fish evidence of environmental contamination. Food Public Health 7(1):1–6Google Scholar
  33. Martins AS, Ferreira TCR, Carneiro RL, Lanza MRV (2014) Simultaneous degradation of hexazinone and diuron herbicides by H2O2/UV and toxicity assessment. J Braz Chem Soc 25(11):2000–2006Google Scholar
  34. Matsumoto ST, Marin-Morales MA (2005) Toxic and genotoxic effects of trivalent and hexavalent chromium - a review. Rev Bras De Toxicol 18(1):77–85Google Scholar
  35. Mermet J, Poussel E (1995) ICP Emission Spectrometers: 1995 analytical figures of merit. Appl Spectrosc 49(10):12–18Google Scholar
  36. Montagner CC, Vidal C, Acayaba RD, Jardim WF, Jardim IC, Umbuzeiro GA (2014) Trace analysis of pesticides and an assessment of their occurrence in Brazilian surface and drinking waters. Anal Methods 6:6668–6677Google Scholar
  37. Oliveira LM, Voltolini JC, Barbério A (2011) Potencial mutagênico dos poluentes na água do rio Paraíba do Sul em Tremembé, SP, Brasil, utilizando o teste Allium cepa. Rev Ambient Água 6(1):90–103Google Scholar
  38. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:09–149Google Scholar
  39. Petrie B, Barden R, Kasprzyr-Hordern B (2014) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:1–25Google Scholar
  40. Pulido M, Schnabel S, Contador JFL, Lozano-Parra J, González F (2016) The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degrad Dev 29:1–12Google Scholar
  41. Queiroz JF, Silveira MP (2017) Recomendações práticas para melhorar a qualidade da água e dos efluentes dos viveiros de aquicultura. Embrapa Meio Ambiente. Circular Técnica. Available in: http://www.cnpma.embrapa.br/aquisys/circular12.pdf
  42. Ramsdorf WA, Ferraro MVM, Oliveira-Ribeiro CA, Cestari MM (2009) Genotoxic evaluation of different doses of inorganic lead (PbII) in Hoplias malabaricus. Environ Monit Assess 158:77–85Google Scholar
  43. Reifferscheid G, Buchinger S (2010) Genetically modified and genetically engineered bacteria in environmental genotoxicology. Adv Biochem En Biotechnol 118:85–112Google Scholar
  44. R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing, ViennaGoogle Scholar
  45. Santos CL, Vital SRO (2016) Formation of processes erosion associated with the use and occupation of soil in the Ribeira river basin, city of Santa Rita/PB. Rev Geama 6(1):53–66Google Scholar
  46. Satolani MF, Corrêa CC, Fagundes MBB (2008) Análise do ambiente institucional e organizacional da piscicultura no estado de Mato Grosso do Sul. Rev De Econ e Agronegócio 6(2):215–234Google Scholar
  47. Schmid W (1975) The micronucleus test. Mutat Res 31:9–15Google Scholar
  48. Schoonover JE, Crim JF (2015) An introduction to soil concepts and the role of soils in watershed management. J Contemp Water Res Educ 154:21–47Google Scholar
  49. Silva ARM, Nogueira JMF (2008) New approach on trace analysis of triclosan in personal care products, biological and environmental matrices. Talanta 74:1498–1504Google Scholar
  50. Sodré FF, Locatelli MAF, Jardim WF (2010) Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water Air Soil Pollut 206:57–67Google Scholar
  51. Silva GA, Messias TG, Leme DM, Monteiro RTR (2013) Mutagenicidade e Genotoxidade em águas superficiais e subterrâneas antes e após o tratamento da água. Holos Environ 13(1):64–73Google Scholar
  52. Souza CMA (2012) Plano Estratégico de Desenvolvimento da Cadeia do Pescado no Território da Grande Dourados. PROCAPTAR/UFGD, Campo Grande–MS. Avaliable in: docplayer.com.br/44080203-Plano-estrategico-de-desenvolvimento-da-cadeia-do-pescado-no-territorio-da-grande-dourados-msGoogle Scholar
  53. Souza TS, Fontanelli CS (2006) Micronucleus test and observation of nuclear alteration of nuclear alterations in erythrocytes of Nile tilapia exposed to waters affect by refinery effluents. Mutat Res 605:87–93Google Scholar
  54. Thomaidi VS, Stasinakis AS, Borova VL, Thomaidis NS (2015) Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study. J Hazard Mater 283:740–747Google Scholar
  55. Turcios AE, Papenbrock J (2014) Sustainable treatment of aquaculture effluents–what can we learn from the past for the future? Sustainability 6:836–856Google Scholar
  56. Umbuzeiro GA, Heringa M, Zeiger E (2017) In vitro genotoxicity testing: significance and use in environmental monitoring. Adv Biochem Eng Biotechnol 157:59–80Google Scholar
  57. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95Google Scholar
  58. Ventura BC (2004) Avaliação dos efeitos citotóxicos, genotóxicos e mutagênicos do herbicida atrazina, utilizando Allium cepa e Oreochromis niloticus como sistemas-teste. Dissertation. Instituto de Biociências. Universidade Estadual Paulista, Rio ClaroGoogle Scholar
  59. Watanabe A, Prezotto LD, Gonçalvez LU, Cabral NS, Renan AM (2007) Princípios técnicos de piscicultura. Dossie técnico, São Paulo, DCGoogle Scholar
  60. Yang YY, Gray JL, Furlong ET, Davis JG, ReVello RC, Borch T (2012) Steroid hormone runoff from agricultural test plots applied with municipal biosolids. Environ Sci Technol 46:2746–2754Google Scholar
  61. Zhang H, Jiang Z, Qin R, Zhang H, Zou J, Jiang W, Liu D (2014) Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana. BMC Plant Biol 14(264):1–16Google Scholar
  62. Zhou D, Yang J, Li H, Cui C, Yu Y, Liu Y, Lin K (2016) The chronic toxicity of bisphenol A to Caenorhabditis elegans after long-term exposure at environmentally relevant concentrations. Chemosphere 154:546–551Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jéssica Pereira de Souza
    • 1
  • Juliana Caroline Vivian Sposito
    • 1
  • Bruno do Amaral Crispim
    • 1
  • Fabiane Gomes da Silva
    • 1
  • Kelly Mari Pires de Oliveira
    • 2
  • Fábio Kummrow
    • 3
  • Valter Aragão do Nascimento
    • 4
  • Cassiana Carolina Montagner
    • 5
  • Lucilene Finoto Viana
    • 6
  • Julio César Jut Solórzano
    • 6
  • Alexeia Barufatti
    • 2
    Email author
  1. 1.Faculty of Exact Sciences and TechnologyFederal University of Grande DouradosDouradosBrazil
  2. 2.Faculty of Biological and Environmental SciencesFederal University of Grande DouradosDouradosBrazil
  3. 3.Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical SciencesFederal University of São PauloDiademaBrazil
  4. 4.Faculty of MedicineFederal University of Mato Grosso do SulCampo GrandeBrazil
  5. 5.Institute of ChemistryState University of CampinasCampinasBrazil
  6. 6.UEMS/Postgraduate Program in Natural ResourcesDouradosBrazil

Personalised recommendations