Environmental Biology of Fishes

, Volume 102, Issue 10, pp 1301–1310 | Cite as

Application of otolith morphometry for the study of ontogenetic variations of Odontesthes argentinensis

  • Fernanda Gabriela BioléEmail author
  • Roberta Callicó Fortunato
  • Gustavo Ariel Thompson
  • Alejandra Vanina Volpedo


The study of otolith morphometry is a tool widely used in numerous studies of fish populations (fish stocks, taxonomic, ecological, ontogeny, among others). The aim of this study was to detect ontogenetic variations in the otolith of Odontesthes argentinensis through the application of traditional and geometric morphometry and the association of these variations with ecological and trophic habits of the species. Fish (52 to 360 mm TL) were collected seasonally between years 2013–2016 in the southwest coast of the Atlantic Ocean (36°39’30.96”S - 56°40’40.09”W). Otolith shape indices (circularity, rectangularity, aspect ratio and surface occupied by sulcus) and Fourier descriptors were measured and compared through ontogenetic stages (I, II and III). The three stages analysed in the present study were differentiated by both traditional and geometric morphometry. The four analysed indices showed significant differences between stages (ANOVA Kruskal Wallis test, P < 0.001) and a simultaneous analysis of the morphometric variables also showed significant differences (Hotelling’s T2 < 0.001). The quadratic discriminant analysis performed on the Fourier descriptors showed a clear separation for each defined group. Therefore, the use of both methodologies simultaneously could be considered robust to evaluate the ontogenetic variations in this species. The observed changes could be associated to changes in the habitat throughout its development, to the sexual maturity of fish and to dietary shifting of these organisms.


Odontesthes argentinensis Argentina Fourier analysis Morphometric ontogenetic indices 



Authors are indebted to CONICET (PIP 112-20120100543CO), ANPCyT (PICT 2015-1823), Universidad de Buenos Aires (UBACYT 20020150100052BA) for financial support.


  1. Agüera A, Brophy D (2011) Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fish Res 110:465–471. Google Scholar
  2. Assis CAdS (2000) Estudo morfológico dos otólitos Sagittae, Asteriscus e lapillus de teleósteos (Actinopterygii, teleostei) de Portugal continental. Universidade de Lisboa, Doctoral ThesisGoogle Scholar
  3. Avigliano E, Martinez-Riaños F, Volpedo AV (2014) Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish Res 149:55–60. Google Scholar
  4. Avigliano E, Comte G, Rosso JJ, Mabragaña E, Della Rosa P, Sanchez S, Volpedo AV, del Rosso F, Schenone NF (2015a) Identification of fish stocks of river Crocker (Plagioscion ternetzi) in Paraná and Paraguay rivers by otolith morphometry. Lat Am J Aquat Res 43(4):718–725. Google Scholar
  5. Avigliano E, Jawad LA, Volpedo AV (2015b) Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae). J Mar Biol Assoc U.K 1-14
  6. Avigliano E, Villatarco P, Volpedo AV (2015c) Otolith Sr:ca ratio and morphometry as indicators of habitat of a euryhaline species: the case of silverside Odontesthes bonariensis. Cienc Mar 41(3):189–202. Google Scholar
  7. Avigliano E, Callicó Fortunato R, Biolé F, Domanico A, Simone SD, Neiff JJ, Volpedo AV (2016) Identification of nurseries areas of juvenile Prochilodus lineatus (Valenciennes, 1836) (Characiformes: Prochilodontidae) by scale and otolith morphometry and microchemistry. Neotrop Ichthyol 14(3):e160005. Google Scholar
  8. Avigliano E, Domanico A, Sánchez S, Volpedo AV (2017) Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish Res 186:1–10. Google Scholar
  9. Avigliano E, Rolón ME, Rosso JJ, Mabragaña E, Volpedo AV (2018) Using otolith morphometry for the identification of three sympatric and morphologically similar species of Astyanax from the Atlantic rain Forest (Argentina). Environ Biol Fish 101(9):1319–1328Google Scholar
  10. Bemvenuti MDA (1990) Hábitos alimentares de peixes-rei (Atherinidae) na regi~ao estuarina da Lagoa dos Patos, Rio Grande do Sul, Brasil. Atlantica Rio Grande 12:79–102Google Scholar
  11. Bird JL, Eppler DT, Checkley DM Jr (1986) Comparisons of herring otoliths using Fourier series shape analysis. Can J Fish Aquat Sci 43:1228–1234Google Scholar
  12. Burke N, Brophy D, King PA (2008) Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES J Mar Sci 65(9):1670–1675Google Scholar
  13. Callicó Fortunato R, Benedito Durà V, Volpedo A (2014) The morphology of saccular otoliths as a tool to identify different mugilid species from the northeastern Atlantic and Mediterranean Sea. Estuar Coast Shelf Sci 146:95–101. Google Scholar
  14. Callicó Fortunato R, Benedito Durà V, González-Castro M, Volpedo A (2017) Morphological and morphometric changes of sagittae otoliths related to fish growth in three Mugilidae species. J Appl Ichthyol 33(6):1137–1145. Google Scholar
  15. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms andapplications. Mar Ecol Prog Ser 188:263–297Google Scholar
  16. Cañás L, Stransky C, Schlickeisen J, Sampedro MP, Fariña AC (2012) Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES J Mar Sci 69:250–256. Google Scholar
  17. Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H (2004) Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can J Fish Aquat Sci 61:158–167Google Scholar
  18. Chao LH, Pereira LE, Vieira JP (1985) Estuarine fish community of the Patos lagoon, Brazil. A baseline study. In: Yáñez-Arancibia A (ed) Fish Community Ecology in Estuaries and Coastal Lagoons: Towards and Ecosystem Integration, Vol. 20. UNAM, Mexico, pp 429–450Google Scholar
  19. Cresson P, Bouchoucha M, Morat F, Miralles F, Chavanon F (2015) A multitracer approach to assess the spatial contamination pattern of hake (Merluccius merluccius) in the French Mediterranean. Sci Total Environ 532:184–194Google Scholar
  20. De Buen F (1953) Los pejerreyes (Familia Atherinidae) en la fauna Uruguaya, con descripción de nuevas especies. B Inst Ocean São Paulo 4:3–80Google Scholar
  21. de Carvalho BM, Martins Vaz-dos Santos A, Spach HL, Volpedo AV (2015) Ontogenetic development of the sagittal otolith of the anchovy, Anchoa tricolor, in a subtropical estuary. Sci Mar 79(4):409–418. Google Scholar
  22. De La Cruz-Agüero J, García-Rodríguez FJ, De La Cruz-Agüero G, Díaz-Murillo BP (2012) Identification of Gerreid species (Actinopterygii: Perciformes: Gerreidae) from the pacific coast of Mexico based on sagittal otolith morphology analysis. Acta Ichthyol Piscat 42(4):297–306. Google Scholar
  23. Di Dario F, Dos Santos VM, De Souza Pereira MM (2013) Range extension of Odontesthes argentinensis (Valenciennes, 1835) (Teleostei: Atherinopsidae) in the southwestern Atlantic, with additional records in the Rio de Janeiro State, Brazil. Ichthyol 30:421–423. Google Scholar
  24. Duarte-Neto P, Lessa R, Stosic B, Morize E (2008) The use of sagittal otoliths in discriminating stocks of common dolphinfish (Coryphaena hippurus) off northeastern Brazil using multishape descriptors. ICES J Mar Sci 65:1144–1152. Google Scholar
  25. Dyer BS (2000) Revisión sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes). Estud Oceanol 19:99–127Google Scholar
  26. Dyer BS (2006) Systematic revision of the south American silversides (Teleostei, Atheriniformes). Biocell 30:69–88Google Scholar
  27. Ferguson GJ, Ward TM, Gillanders BM (2011) Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish Res 110:75–83. Google Scholar
  28. Gagliano M, McCormick MI (2004) Feeding history influences otolith shape in tropical fish. Mar Ecol Prog Ser 278:291–296Google Scholar
  29. Galley E, Wright PJ, Gibb FM (2006) Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod. ICES J Mar Sci 63:1710–1717. Google Scholar
  30. Gauldie RW (1988) Function, form and time-keeping properties of fish otoliths. Comp Biochem Physiol A Mol Integr Physiol 91:395–402Google Scholar
  31. Gauldie RW, Crampton JS (2002) An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. J Fish Biol 60:1204–1221Google Scholar
  32. Harbitz A, Albert OT (2015) Pitfalls in stock discrimination by shape analysis of otolith contours. ICES J Mar Sci doi 72:2090–2097. Google Scholar
  33. Hüssy K (2008) Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects. J Exp Mar Biol Ecol 364(1):35–41Google Scholar
  34. Iwata H, Ukai Y (2002) SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptical Fourier descriptors. J Hered 93:384–385Google Scholar
  35. Jaramillo AM, Tombari AD, Benedito Durá V, Rodrigo Santamalia ME, Volpedo AV (2014) Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas 30(1):57–66 Accessed 15 Feb 2019Google Scholar
  36. Jawad LA, Sabatino G, Ibanez AL, Andaloro F, Battaglia P (2017) Morphology and ontogenetic changes in otoliths of the mesopelagic fishes Ceratoscopelus maderensis (Myctophidae), Vinciguerria attenuata and V. poweriae (Phosichthyidae) from the strait of Messina (Mediterranean Sea). Acta Zool 00:1–17. Google Scholar
  37. Joh M, Matsuda T, Miyazono A (2015) Common otolith microstructure related to key early life-history events in flatfishes identified in the larvae and juveniles of cresthead flounder Pseudopleuronectes schrenki. J Fish Biol 86:448–462. Google Scholar
  38. Lleonart J, Salat J, Torres GJ (2000) Removing allometric effects of body size in morphological analysis. J Theor Biol 205:85–93. Google Scholar
  39. Llompart FM, Colautti DC, Baigún CRM (2012) Assessment of a major shore-based marine recreational fishery in the Southwest Atlantic, Argentina. New Zeal J Mar Fresh 46:57–70. Google Scholar
  40. Llompart FM, Colautti DC, Maiztegui T, Cruz-Jimenez AM, Baigún CRM (2013) Biological traits and growth patterns of Pejerrey Odontesthes argentinensis. J Fish Biol 82:458–474. Google Scholar
  41. Llompart FM, Colautti DC, Baigún CRM (2017) Conciliating artisanal and recreational fisheries in Anegada Bay, Argentina. Fish Res 190:140–149. Google Scholar
  42. Lombarte A, Castellón A (1991) Interespecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can J Zool 69:2442–2449Google Scholar
  43. Lombarte A, Tuset V (2015) Morfometria de otolitos. Métodos de estudo com otólitos: principíos e aplicações. Buenos Aires: CAFP-BA-PIESCI, 269–302Google Scholar
  44. Lombarte A, Torres GJ, Morales-Nin B (2003) Specific Merluccius otolith growth patterns related to phylogenetics and environmental factors. J Mar Biol Assoc U K 83(2):277–281Google Scholar
  45. Lombarte A, Palmer M, Matallanas J, Gómez-Zurita J, Morales-Nin B (2010) Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ Biol Fish 89:607–618. Google Scholar
  46. Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S (2010) A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ Biol Fish 89:591–605. Google Scholar
  47. Martinetto P, Iribarne O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318:71–84. Google Scholar
  48. Mohan JA, Rulifson RA, Corbett DR, Halden NM (2012) Validation of Oligohaline elemental otolith signatures of striped bass by use of in situ caging experiments and water chemistry. Mar Coast Fish 4(1):57–70. Google Scholar
  49. Monteiro LR, Di Beneditto APM, Guillermo LH, Rivera LA (2005) Alometric changes and shape differentiation of sagitta otoliths in sciaenid. Fish Res 74:288–299Google Scholar
  50. Morales-Nin BYO (1987) The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. In: Payne, A.I.L., Gulland, J.A., Brink, K.H. (Eds.), The Benguela and Comparable Ecosystems. S Afr J Mar Sci 5:255–262Google Scholar
  51. Orlov AM, Afanasyev PK (2013) Otolith morphometrics as a tool for analysis of the population structure of Pacific cod Gadus macrocephalus (Gadidae, Teleostei) Amur Zool Zh 3:327-331Google Scholar
  52. Petursdottir G, Begg GA, Marteinsdottir G (2006) Discrimination between Icelandic cod (Gadus morhua L.) populations from adjacent spawning areas based on otolith growth and shape fish res 80:182-189.
  53. Piera J, Parisi-Baradad V, García-Ladona E, Lombarte A, Recasens L, Cabestany J (2005) Otolith shape feature extraction oriented to automatic classification with open distributed data. Mar Freshw Res 56(5):805–814Google Scholar
  54. Ponton D (2006) Is geometric morphometrics efficient for comparing otolith shape of different fish species? J Morphol 267(6):750–757. Google Scholar
  55. Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Freshw Res 56(5):497–504Google Scholar
  56. Radtke RL, Shafer DJ (1992) Environmental sensitivity of fish otolith microchemistry. Aust J Mar Freshw Res 43:935–951Google Scholar
  57. Rohlf JF, Marcus LF (1993) A revolution morphometrics. Trends Ecol Evol 8(4):129–132Google Scholar
  58. Sadighzadeh Z, Otero-Ferrer JL, Lombarte A, Fatemi MR, Tuset VM (2014) An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology. Sci Mar 78:353–362Google Scholar
  59. Sampaio LA (2006) Production of “pejerrey” Odontesthes argentinensis fingerlings: a review of current techniques. Biocell 30(1):121–123Google Scholar
  60. Silva Rodríguez MP, Favero M, Berón MP, Mariano-Jelicich R, Mauco L (2005) Ecology and conservation of seabirds using the coasts of Buenos Aires Province as a wintering area. El hornero 20(1):111–130Google Scholar
  61. Steer MA, Fowler AJ (2014) Spatial variation in shape of otoliths for southern garfish Hyporhamphus melanochir–contribution to stock structure. Mar Biol Res 11:23–33. Google Scholar
  62. Thompson GA, Volpedo AV (2018) Diet composition and feeding strategy of the New World silverside Odontesthes argentinensis in a temperate coastal area (South America). Mar Coast Fish 10:80–88Google Scholar
  63. Tombari A, Volpedo AV, Echeverría DD (2005) Desarrollo de la sagitta en juveniles y adultos de Odontesthes argentiniensis (Valenciennes, 1835) y O. bonariensis (Valenciennes, 1835) de la provincia de Buenos Aires, Argentina (Teleostei: Atheriniformes). Rev Chil Hist Nat 78:623–633Google Scholar
  64. Tombari A, Gosztonyi A, Echeverría DD, Volpedo AV (2010) Otolith and vertebral morphology of marine atherinid species (Atheriniformes, Atherinopsidae) coexisting in the southwestern Atlantic Ocean. Cienc Mar 36(3):213–223Google Scholar
  65. Tracey SR, Lyle JM, Duhamel G (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish Res 77:138–147Google Scholar
  66. Turan C (2000) Otolith shape and meristic analysis of herring (Clupea harengus) in the north-East Atlantic. Arch Fish Mar Res 48(3):213–225Google Scholar
  67. Tuset VM, Lombarte A, González JA, Pertusa JF, Lorente M (2003a) Comparative morphology of the sagittal otolith in Serranus spp. J Fish Biol 63(6):1491–1504Google Scholar
  68. Tuset VM, Lozano IJ, González JA, Pertusa JF, García-Díaz MM (2003b) Shape indices to identify regional differences in otolith morphology of scomber, Serranus cabrilla (L., 1758). J Appl Ichthyol 19(2):88–93. Google Scholar
  69. Tuset VM, Imondi R, Aguado G, Otero-Ferrer JL, Santschi L, Lombarte A, Love M (2015) Otolith patterns of rockfishes from the northeastern Pacific. J Morphol 276(4):458–469Google Scholar
  70. Valentin AE, Peninc X, Chanutb JP, Powerd D, Sévignya JM (2014) Combining microsatellites and geometric morphometrics for the study of redfish (Sebastes spp.) population structure in the Northwest Atlantic. Fish Res 154:102–119Google Scholar
  71. Vasconcelos J, Vieira AR, SequeiraV GJA, Kaufmann M, Gordo LS (2018) Identifying populations of the blue jack mackerel (Trachurus picturatus) in the Northeast Atlantic by using geometric morphometrics and otolith shape analysis. Fish Bull 116:81–92Google Scholar
  72. Vignon M (2012) Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. J Exp Mar Biol Ecol 420:26–32Google Scholar
  73. Vignon M, Morat F (2010) Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar Ecol Prog Ser 411:231–241Google Scholar
  74. Volpedo AV, Echeverría DD (1999) Morfología de los otolitos sagittae de juveniles y adultos de Micropogonias furnieri (Desmarest, 1823) (Sciaenidae). Revista de Ciencias Mar Thalassas 15:19–24Google Scholar
  75. Volpedo AV, Echeverría DD (2003) Ecomorphological patterns of the sagitta in fish on the continental shelf off argentine. Fish Res 60(2):551–560Google Scholar
  76. Volpedo AV, Vaz dos Santos AM (2015) Métodos de estudios con otolitos: principios y aplicaciones/ Métodos de estudos com otólitos: princípios e aplicações –1era ed. edición bilingue. Ciudad Autónoma de Buenos Aires ISBN 978-987-33-8884-2Google Scholar
  77. Volpedo AV, Tombari AD, Echeverría DD (2008) Eco-morphological patterns of the sagitta of Antarctic fish. Polar Biol 31:635–640. Google Scholar
  78. Waessle JA, Lasta CA, Favero M (2003) Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36°S). Sci Mar 67(2):233–240Google Scholar
  79. Wilson RR Jr (1985) Depth-related changes in sagitta morphology in six Macrourid fishes of the Pacific and Atlantic oceans. Copeia 1985:1011–1017Google Scholar
  80. Wu Q, Merchant F, Castleman K (2008). Microscope image processing. Elsevier. 548 pp.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CONICET, Universidad de Buenos AiresInstituto de Investigaciones en Producción Animal (INPA)Buenos AiresArgentina
  2. 2.Centro de Estudios Transdisciplinarios del Agua (CETA), Facultad de Ciencias VeterinariasUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations