Advertisement

Environmental Biology of Fishes

, Volume 102, Issue 8, pp 1119–1136 | Cite as

Feeding habits and ecological role of the freshwater stingray Potamotrygon magdalenae (Duméril 1865) (Myliobatiformes: Potamotrygonidae), combining gut-content and stable isotope analysis

  • Viviana Márquez-VelásquezEmail author
  • Ricardo S. Rosa
  • Esteban Galindo
  • Andrés F. Navia
Article

Abstract

Understanding the ecological role of a species in an ecosystem and the dynamics of the communities depends largely on knowledge of the trophic relationships. We evaluated the feeding habits and the trophic ecology of the endemic Colombian stingray Potamotrygon magdalenae, integrating stomach content and isotopic analyses (13C and 15N). The samples were collected in the middle Magdalena River basin, Colombia, during artisanal fishing operations in the dry and rainy seasons. The stomach content analysis indicated that P. magdalenae fed on a high number of occasional items, such as seeds, Planariidae, Teleostei and Nematoda, with Diptera being the dominant food component at the population level. There were no significant differences in diet between males and females. In contrast, isotopic analysis showed that Coleoptera was the most important food source assimilated by the species, followed by Ephemeroptera; Chironomidae and Trichoptera made the lowest contributions. No significant differences in δ13C and δ15N were observed between the sexes or hydrological seasons. Estimates of the isotopic niche indicated that P. magdalenae has a narrower trophic niche than the teleost fishes present in the study area. The trophic level was identified as intermediate, suggesting that Potamotrygon magdalenae plays a role as a mesopredator in the food web in the study area.

Keywords

Batoidea Diet Feeding sources Food webs δ13C and δ15

Notes

Acknowledgments

VMV thanks the Postgraduate Student Agreement Program (PEC-PG) and the National Council for Scientific and Technological Development, Brazil (CNPq) (Proc. 190513/2014-4), for the master scholarship. Thanks are also due to the fishermen of La Pesca, Antioquia, Colombia, for their valuable contributions to the collection of samples and to colleagues of the SQUALUS Foundation, especially J. López, for their assistance conducting laboratory work and discussions regarding the statistical analysis of the isotope data. This study was supported financially by the Rufford Foundation (RSG-18238-1).

Author contributions

AFN and VMV conceived and designed the study. VMV collected data, compiled data from the literature and performed the laboratory work. AFN contributed materials, reagents, and analytical tools. VMV, EG and AFN analyzed the data. VMV, RSR, EG and AFN contributed to the interpretation of the results. VMV wrote the paper and led the revisions, and ANF and RSR critically reviewed and corrected the different versions of the manuscript.

Compliance with ethical standards

All animals were captured by fishermen as bycatch from a local fishing boat.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10641_2019_897_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19.4 kb)

References

  1. Abelha MCF, Agostinho AA, Goulart E (2001) Plasticidade trófica em peixes de água doce. Acta Sci 23(2):425–434Google Scholar
  2. Agualimpia JYC, Largacha YL, Lara TR (2007) Contribución a la ecología trófica del denton Leporinus muyscorum (Steindachner 1902) en la Ciénaga La Grande, Cuenca media del Rio Atrato, Colombia. Revista Institucional Universidad Tecnológica del Chocó Investigación Biodiversidad y Desarrollo 26(1)Google Scholar
  3. Amundsen PA, Gabler HM, Staldvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data modification of the Costello (1990) method. J Fish Biol 48:607–614.  https://doi.org/10.1111/j.1095-8649.1996.tb01455.x Google Scholar
  4. Arias-Díaz DM, Reinoso-Flórez G, Guevara-Cardona G, Villa-Navarro FA (2007) Distribución espacial y temporal de los coleópteros acuáticos en la cuenca del río Coello (Tolima, Colombia). Caldasia:177–194Google Scholar
  5. Arrington DA, Winemiller KO (2004) Organization and maintenance of fish diversity in shallow waters of tropical floodplain rivers. In: Proceedings of the second international symposium on the Management of Large Rivers for fisheries, vol 2. FAO Regional Office for Asia and the Pacific Bangkok, Thailand, pp 25–36Google Scholar
  6. Bizzarro JJ, Robinson HJ, Rinewalt CS, Ebert DA (2007) Comparative feeding ecology of four sympatric skate species off Central California, USA. In: Biology of skates. Springer, Dordrecht, pp 91–114.  https://doi.org/10.1007/s10641-007-9241-6 Google Scholar
  7. Blaber SJM (1986) Feeding selectivity of a guild of piscivorous fish in mangrove areas of north-West Australia. Aust J Mar Freshwat Res 37:329–336CrossRefGoogle Scholar
  8. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  9. Borkent A, Spinelli GR (2007) Neotropical Ceratopogonidae (Diptera, Insecta), vol 4. Pensoft Publishers, Sofia, p 199Google Scholar
  10. Braga RR, Bornatowski H, Vitule JRS (2012) Feeding ecology of fishes: an overview of worldwide publications. Rev Fish Biol Fish 22:915–929.  https://doi.org/10.1007/s11160-012-9273-7 CrossRefGoogle Scholar
  11. Brown SC, Bizzarro JJ, Cailliet GM, Ebert DA (2012) Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environ Biol Fish 95:3–20.  https://doi.org/10.1007/s10641-011-9959-z CrossRefGoogle Scholar
  12. Buitrago-Suárez UA (2006) Anatomía comparada y evolución de las especies de Pseudoplatystoma Bleeker 1762. Revista Academia Colombiana de Ciencias 114:117–141Google Scholar
  13. Caldas JP, Castro-González E, Puentes V, Rueda M, Lasso CA, Duarte LO, Grijalba-Bendeck M, Gómez F, Navia AF, Mejía-Falla PA, Bessudo S, Diazgranados MC, Zapata Padilla LA. (Eds.) (2010) Plan de Acción Nacional para la Conservación y Manejo de Tiburones, Rayas y Quimeras de Colombia (PAN-Tiburones Colombia). Instituto Colombiano Agropecuario, Secretaria Agricultura y Pesca de San Andrés Isla, Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Instituto de Investigaciones Marinas y Costeras, Instituto Alexander Von Humboldt, Universidad del Magdalena, Universidad Jorge Tadeo Lozano, Pontificia Universidad Javeriana, Fundación SQUALUS, Fundación Malpelo y otros Ecosistemas Marinos, Conservación Internacional, WWF Colombia. Editorial Produmedios. pp. 60. BogotáGoogle Scholar
  14. Carvalho MD, Loboda TS, Da Silva JPCB (2016) A new subfamily, Styracurinae, and new genus, Styracura, for Himantura schmardae (Werner, 1904) and Himantura pacifica (Beebe & Tee-Van, 1941) (Chondrichthyes: Myliobatiformes). Zootaxa 4175(3):201–221.  https://doi.org/10.11646/zootaxa.4175.3.1 CrossRefGoogle Scholar
  15. Catarino MF, Zuanon J (2010) Feeding ecology of the leaf fish Monocirrhus polyacanthus (Perciformes: Polycentridae) in a terra firme stream in the Brazilian Amazon. Neotrop Ichthyol 8:83–186.  https://doi.org/10.1590/S1679-62252010000100022
  16. Charvet-Almeida P, Araújo MLG, Rosa RS, Rincón G (2002) Neotropical freshwater stingrays: diversity and conservation status. Shark News 14:47–51Google Scholar
  17. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143.  https://doi.org/10.1111/j.1442-9993.1993.tb00438.x CrossRefGoogle Scholar
  18. Clarke KR, Gorley RN (2006) PRIMER v6: user manual / tutorial. Primer-E Ltd, PlymouthGoogle Scholar
  19. Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. User’s Guide and application. http://purl.oclc.org/estimates
  20. Compagno LJV, Cook SF (1995) The exploitation and conservation of freshwater elasmobranchs: status of taxa and prospects for the future. In: Oetinger MI, Zorzi GD (eds) The Biology of Freshwater Elasmobranchs. J Aquaric Aquat Sci 7:62–90Google Scholar
  21. Correa SB, Winemiller KO (2014) Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95(1):210–224.  https://doi.org/10.1890/13-0393.1 CrossRefGoogle Scholar
  22. Cortés E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738.  https://doi.org/10.1139/f96-316 CrossRefGoogle Scholar
  23. Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717.  https://doi.org/10.1006/jmsc.1999.0489 CrossRefGoogle Scholar
  24. Costello MJ (1990) Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36:261–263CrossRefGoogle Scholar
  25. Davis AM, Blanchette ML, Pusey BJ, Jardine TD, Pearson RG (2012) Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river. Freshw Biol 57(10):2156–2172CrossRefGoogle Scholar
  26. DoNascimiento C, Herrera-Collazos EE, Herrera-R GA, Ortega-Lara A, Villa-Navarro FA, Oviedo JSU, Maldonado-Ocampo JA (2017) Checklist of the freshwater fishes of Colombia: a Darwin Core alternative to the updating problem. ZooKeys 708:25.  https://doi.org/10.3897/zookeys.708.13897 CrossRefGoogle Scholar
  27. Ebert DA, Bizzarro JJ (2007) Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ Biol Fish 80:221–237.  https://doi.org/10.1007/978-1-4020-9703-4_8 CrossRefGoogle Scholar
  28. Ferrington LC (2008) Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiología 595:447–455.  https://doi.org/10.1007/s10750-007-9130-1 CrossRefGoogle Scholar
  29. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  30. Forero-Céspedes AM, Gutiérrez C, Reinoso-Flórez G (2016) Composición y estructura de la familia Baetidae (Insecta: Ephemeroptera) en una cuenca andina colombiana. Hidrobiológica 26(3):459–474CrossRefGoogle Scholar
  31. Forsberg BR, Araujo-Lima CARM, Martinelli LA, Victoria RL, Bonassi JA (1993) Autotrophic carbon sources for fish of the Central Amazon. Ecology 74:643–652.  https://doi.org/10.2307/1940793 CrossRefGoogle Scholar
  32. Froese R, Pauly D (2018) FishBase 2018, version January, 2018. World Wide Web electronic publication Retrieved from http://www.fishbase.org. Accessed 15 November 2018
  33. Galvis G, Mojica JI (2007) The Magdalena River fresh water fishes and fisheries. Aquat Ecosyst Health 10(2):127–139.  https://doi.org/10.1080/14634980701357640 CrossRefGoogle Scholar
  34. Gama CS, Rosa RS (2015) Uso de recursos e dieta das raias de água doce (Chondrichthyes, Potamotrygonidae) da Reserva Biológica do Parazinho, AP. Biota Amazônia 5:90–98.  https://doi.org/10.18561/2179-5746/biotaamazonia.v5n1p90-98 Google Scholar
  35. Garzón NV, Gutiérrez JC (2013) Deterioro de humedales en el Magdalena medio: un llamado para su conservación. Fundación Alma – Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, Bogotá, 145 ppGoogle Scholar
  36. Gelman A, Carlin JB, Stern HS, Rubin DB (2014) Bayesian data analysis. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  37. Gómez-Serrano JR (2004) Ecología alimentaria de la nutria gigante (Pteronura brasiliensis) en el bajo Río Bita Vichada, Colombia, pp. 203–224 In: Díazgranados-Pitti MC, Trujillo-González F (eds) Estudios de fauna silvestre en ecosistemas acuáticos en la Orinoquia colombiana. Fundación Omacha / IIRBAvH / GTZ / Pontificia Universidad Javeriana - IDEADE / DET. pp.403. Santa Fe de Bogotá D. C. (Colombia), Serie Investigación, 6Google Scholar
  38. Goulding M (1980) The fishes and the Forest: explorations in Amazonian natural history. University California Press, BerkeleyGoogle Scholar
  39. Hernández-Serna A, Granado-Lorencio C, Jiménez-Segura LF (2015) Diel cycle size-dependent trophic structure of neotropical fishes: a three year case analysis from 35 floodplain lakes in Colombia. J Appl Ichthyol 31(4):638–645CrossRefGoogle Scholar
  40. Holdridge L (1987) Ecología basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura, San José, Costa Rica, 216 ppGoogle Scholar
  41. Huamantinco AA, Nessimian JL (1999) Estrutura e distribuição espacial da comunidade de larvas de Trichoptera (Insecta) em um tributário de primeira ordem do Rio Paquequer, Teresópolis, RJ. Acta Limnol Bras 11(2):1–16Google Scholar
  42. Hussey NE, MacNeil MA, Olin JA, McMeans BC, Kinney MJ, Chapman DD, Fisk AT (2012) Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. J Fish Biol 80(5):1449–1484.  https://doi.org/10.1111/j.1095-8649.2012.03251.x CrossRefGoogle Scholar
  43. Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM (2015) Boletín climatológico mensual 2015. http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual. Accessed 12 October 2018
  44. Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM (2016) Promedios climatológicos. Instituto de Hidrología, Meteorología y Estudios Ambientales. http://www.ideam.gov.co/. Accessed 12 January 2018
  45. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602.  https://doi.org/10.1111/j.1365-2656.2011.01806.x CrossRefGoogle Scholar
  46. Jacobsen IP, Bennett MB (2013) A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei). PLoS One 8(8):e71348.  https://doi.org/10.1371/journal.pone.0071348 CrossRefGoogle Scholar
  47. Jardine TD, Rayner TS, Pettit NE et al (2017) Body size drives allochthony in food webs of tropical rivers. Oecologia 183(2):505–517CrossRefGoogle Scholar
  48. Jepsen DB, Winemiller KO (2002) Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96:46–55.  https://doi.org/10.1034/j.1600-0706.2002.960105.x CrossRefGoogle Scholar
  49. Jepsen DB, Winemiller KO (2007) Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecol Freshw Fish 16(3):267–281.  https://doi.org/10.1111/j.1600-0633.2006.00218.x CrossRefGoogle Scholar
  50. Jiménez-Segura LF, Galvis-Vergara G, Cala-Cala P, García-Alzate CA, López-Casas S, Ríos-Pulgarín Arango GA, Mancera-Rodríguez NJ, Gutiérrez-Bonilla F, Álvarez-León R (2016) Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of North-Western South America. J Fish Biol 89(1):65–101CrossRefGoogle Scholar
  51. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106(1):110–127Google Scholar
  52. Keppeler FW, Lanés LEK, Rolon AS, Stenert C, Lehmann P, Reichard M, Maltchik L (2015) The morphology–diet relationship and its role in the coexistence of two species of annual fishes. Ecol Freshw Fish 24(1):77–90CrossRefGoogle Scholar
  53. Kim SL, del Rio CM, Casper D, Koch PL (2012) Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol 215(14):2495–2500.  https://doi.org/10.1242/jeb.070656 CrossRefGoogle Scholar
  54. Krebs CJ (1999) Ecologycal methodology, 2nd edn. Addison Wesley Longman, Inc, Menlo ParkGoogle Scholar
  55. Lasso CA, Rosa RS, Sánchez-Duarte P, Morales-Betancourt MA, Agudelo-Córdoba E. (eds) (2013). IX. Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte I. Colombia, Venezuela, Ecuador, Perú, Brasil, Guyana, Surinam y Guayana Francesa: diversidad, bioecología, uso y conservación. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt (IAvH). pp. 368. Bogotá, D. C., ColombiaGoogle Scholar
  56. Lasso CA, Rosa RS, Morales-Betancourt MA, Garrone-Neto D, Carvalho M. (eds.) (2016) XV. Rayas de agua Dulce (Potamotrygonidae) de Suramérica. Parte II: Colombia, Brasil, Perú, Bolivia, Paraguay, Uruguay yArgentina. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander vonHumboldt (IAvH). pp. 435. Bogotá, D. C., ColombiaGoogle Scholar
  57. Layman CA, Arrington DA, Montana CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48.  https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2 CrossRefGoogle Scholar
  58. Logan JM, Lutcavage ME (2010) Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644(1):231–244CrossRefGoogle Scholar
  59. Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77(4):838–846.  https://doi.org/10.1111/j.1365-2656.2008.01394.x CrossRefGoogle Scholar
  60. Lonardoni AP, Goulart E, Oliveira EF, Abelha M (2006) Hábitos alimentares e sobreposição trófica das raias Potamotrygon falkneri e Potamotrygon motoro (Chondrichthyes: Potamotrygonidae) na planície alagável do alto rio Paraná, Brasil. Acta Sci Biol Sci 28:195–202.  https://doi.org/10.4025/actascibiolsci.v28i3.208 Google Scholar
  61. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1007CrossRefGoogle Scholar
  62. Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  63. Lujan NK, German DP, Winemiller KO (2011) Do wood grazing fishes partition their niche? Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Funct Ecol 25:1327–1338.  https://doi.org/10.1111/j.1365-2435.2011.01883.x CrossRefGoogle Scholar
  64. MacNeil MA, Skomal GB, Fisk AT (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser 302:199–206CrossRefGoogle Scholar
  65. MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63(2):345–353.  https://doi.org/10.1139/f05-219 CrossRefGoogle Scholar
  66. Maldonado-Ocampo JA, Ortega-Lara A, Usma JS, Galvis G, Villa-Navarro F, Vásquez L, Prada-Pedreros L, Rodríguez CA (2005) Peces de los Andes de Colombia: guía de campo. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, BogotáGoogle Scholar
  67. Matthews WJ (1998) Patterns in freshwater fish ecology. Chapman and Hall, MassachusettsCrossRefGoogle Scholar
  68. McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390.  https://doi.org/10.1034/j.1600-0706.2003.12098.x CrossRefGoogle Scholar
  69. Melo CE, Machado FA, Pinto-Silva V (2004) Feeding habits of fish from a stream in the savanna of Central Brazil, Araguaia Basin. Neotrop Ichthyol 2:37–44.  https://doi.org/10.1590/S1679-62252004000100006 CrossRefGoogle Scholar
  70. Mérona BD, Rankin-de-Mérona J (2004) Food resource partitioning in a fish community of the Central Amazon floodplain. Neotrop Ichthyol 2(2):75–84CrossRefGoogle Scholar
  71. Mojica JI, Usma JS, Álvarez-León R, Lasso CA (eds) (2012) Libro rojo de peces dulceacuícolas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales. pp. 319. Bogotá, D. C., ColombiaGoogle Scholar
  72. Moreira SS, Zuanon J (2002) Dieta de Retroculus lapidifer (Perciformes: Cichlidae), um peixe reofílico do rio Araguaia, Estado do Tocantins, Brasil. Acta Amaz 32:691–705. http://doi.org/1809-43922002324705
  73. Moreno L, Fonseca C (1987) Ciénagas: Polos potenciales para el desarrollo. Actual Biol 16(60):57–68Google Scholar
  74. Moro G, Charvet P, Rosa RS (2011) Aspectos da alimentação da raia de água doce Potamotrygon orbignyi (Chondrichthyes: Potamotrygonidae) da bacia do rio Parnaíba, nordeste do Brasil. Rev Nordest Biol 20:47–57Google Scholar
  75. Moro G, Charvet P, Rosa RS (2012) Insectivory in Potamotrygon signata (Chondrichthyes: Potamotrygonidae), an endemic freshwater stingray from the Parnaíba River basin, northeastern Brazil. Braz J Biol 72(4):885–891.  https://doi.org/10.1590/S1519-69842012000500015 CrossRefGoogle Scholar
  76. Murry BA, Farrell JM, Teece MA, Smyntek PM (2006) Effect of lipid extraction on the interpretation of fish community trophic relationships determined by stable carbon and nitrogen isotopes. Can J Fish Aquat Sci 63:2167–2172CrossRefGoogle Scholar
  77. Navia AF, Mejía-Falla PA, López-García J, Giraldo A, Cruz-Escalona VH (2017) How many trophic roles can elasmobranchs play in a marine tropical network?. Marine and Freshwater Research 68 (7):1342Google Scholar
  78. Nessimian JL, Sanseverino AM (1998) Trophic functional categorization of the chironomid larvae (Diptera: Chironomidae) in a first-order stream at the mountain region of Rio de Janeiro State, Brazil. Verhs Internat Verein Limnol 26:2115–2119.  https://doi.org/10.1080/03680770.1995.11901116 Google Scholar
  79. Ou C, Winemiller KO (2016) Seasonal hydrology shifts production sources supporting fishes in rivers of the lower Mekong Basin. Can J Fish Aquat Sci 73(9):1342–1362.  https://doi.org/10.1139/cjfas-2015-0214 CrossRefGoogle Scholar
  80. Paetzold A, Schubert CJ, Tockner K (2005) Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects. Ecosystems 8(7):748–759CrossRefGoogle Scholar
  81. Parnell AC, Jackson AL (2011) SIAR: stable isotope analysis in R. http://CRAN.R-project.org/package=siar. Accessed 20 November 2016
  82. Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Jackson AL, Grey J, Kelly DJ, Inger R (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399.  https://doi.org/10.1002/env.2221 Google Scholar
  83. Platell ME, Potter IC, Clarke KR (1998) Resource partitioning by four species of elasmobranchs (Batoidea: Urolophidae) in coastal waters of temperate Australia. Mar Biol 131:719–734.  https://doi.org/10.1007/s002270050363 CrossRefGoogle Scholar
  84. Post DM (2002) Using stable isotopes to estimate trophic position models methods, and assumptions. Ecology 83:703–718.  https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 CrossRefGoogle Scholar
  85. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152(1):179–189CrossRefGoogle Scholar
  86. Prejs A, Prejs K (1987) Feeding of tropical freshwater fishes: seasonality in resource availability and resource use. Oecologia 71(3):397–404CrossRefGoogle Scholar
  87. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52(2):137–154.  https://doi.org/10.1086/409852 CrossRefGoogle Scholar
  88. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  89. Ramírez A, Pringle CM (1998) Structure and production of a benthic insect assemblage in a Neotropical stream. Rev Biol Trop 17:443–463.  https://doi.org/10.2307/1468365 Google Scholar
  90. Ramos-Socha HB, Grijalba-Bendeck M (2011) Bioecología de la raya de agua dulce Potamotrygon magdalenae (Duméril, 1865) (Myliobatiformes) en la ciénaga de Sabayo, Guaimaral, Colombia. Rev UDCA Actual Divulg Cient 14:109–118Google Scholar
  91. Roldán G (1988) Guía para el estudio de los macroinvertebrados acuáticos del departamento de Antioquia. Editorial Presencia, BogotáGoogle Scholar
  92. Roldán G, Zúñiga M d C, Zamora H, Álvarez LF, Reinoso G, Longo M (2014) Capítulo de Colombia. In: Perla AE, Mora JM, Campbell B, Springer M (eds) Diversidad, conservación y uso de los macroinvertebrados dulceacuícolas de México. Cuba y Puerto Rico. IMTA México, CentroaméricaGoogle Scholar
  93. Rosa RS, Charvet-Almeida P, Diban CC (2010) Biology of the South American Potamotrygonid stingrays. Chapter 5. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II. Biodiversity, adaptive physiology and conservation. CRC Press, pp 241–286Google Scholar
  94. Shibuya A, Araújo MLG, Zuanon JAS (2009) Analysis of stomach contents of freshwater stingrays (Elasmobranchii, Potamotrygonidae) from the middle Negro River, Amazonas, Brazil. Pan-Am J Aquat Sci 4(4):466–475Google Scholar
  95. Silva TB, Uieda VS (2007) Preliminary data on the feeding habits of the freshwater stingrays Potamotrygon falkneri and Potamotrygon motoro (Potamotrygonidae) from the upper Paraná River basin, Brazil. Biota Neotrop 7(1)  https://doi.org/10.1590/S1676-06032007000100027
  96. Smith JA, Mazumder D, Suthers SM, Taylor MD (2013) To fit or not to fit: evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol Evol 4:612–618.  https://doi.org/10.1111/2041-210X.12048 CrossRefGoogle Scholar
  97. Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155–160CrossRefGoogle Scholar
  98. Stock BC, Semmens BX (2013) MixSIAR GUI user manual, version 1.0. Available from: http://github.com/brianstock/MixSIAR/blob/master/MixSIAR%20GUI%20User%20Manual%201.0.pdf/. Accessed 25 Nov 2016
  99. Syväranta J, Lensu A, Marjomäki TJ, Oksanen S, Jones RI (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8:e56094.  https://doi.org/10.1371/journal.pone.0056094 CrossRefGoogle Scholar
  100. Thorburn DC, Gill H, Morgan DL (2014) Predator and prey interactions of fishes of a tropical Western Australia river revealed by dietary and stable isotope analyses. J R Soc of West Aust 97:363–387Google Scholar
  101. Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing the trophic position of littoral fish estimated using stable nitrogen isotopes (δ15N) and dietary data. Can J Fish Aquat Sci 54:1142–1158.  https://doi.org/10.1139/f97-016 CrossRefGoogle Scholar
  102. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182.  https://doi.org/10.1007/s00442-003-1270-z CrossRefGoogle Scholar
  103. Vaudo JJ, Heithaus MR (2011) High-trophic-level consumers: elasmobranchs. In: Wolanski E, Mclusky DS (eds) Treatise on estuarine and coastal science, vol 6, pp 203–225.  https://doi.org/10.1016/B978-0-12-374711-2.00617-3 CrossRefGoogle Scholar
  104. Weidner TA, Hirons AC, Leavitt A, Kerstetter DW (2017) Combined gut-content and stable isotope trophic analysis of the pelagic stingray Pteroplaytrygon violacea (Bonaparte, 1832) diet from the western North Atlantic Ocean. J Appl Ichthyol 33(3):386–394CrossRefGoogle Scholar
  105. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15(1):393–425CrossRefGoogle Scholar
  106. Wetherbee BM, Cortés E, Bizzarro JJ (2012) Food consumption and feeding habits. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives, 2nd edn. CRC Press, Boca Raton, pp 239–264CrossRefGoogle Scholar
  107. White WT, Platell ME, Potter IC (2004) Comparisons between the diets of four abundant species of elasmobranchs in a subtropical embayment: implications for resource partitioning. Mar Biol 144:439–448.  https://doi.org/10.1007/s00227-003-1218-1 CrossRefGoogle Scholar
  108. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539CrossRefGoogle Scholar
  109. Winemiller KO (1989) Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan ilanos. Enviro Biol Fishes 26(3):177–199CrossRefGoogle Scholar
  110. Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movement on tropical river food webs. J Fish Biol 53:267–296CrossRefGoogle Scholar
  111. Wolda H (1980) Seasonality of tropical insects. J Anim Ecol 277–290Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ciências Biológicas (Zoologia)João PessoaBrazil
  2. 2.Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUSCaliColombia
  3. 3.Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da NaturezaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations