Advertisement

Environmental Biology of Fishes

, Volume 102, Issue 8, pp 1107–1117 | Cite as

Population genetic evidence for a unique resource of Nile tilapia in Lake Tanganyika, East Africa

  • Asilatu Shechonge
  • Benjamin P. Ngatunga
  • Rashid Tamatamah
  • Stephanie J. Bradbeer
  • Emmanuel Sweke
  • Alan Smith
  • George F. Turner
  • Martin J. GennerEmail author
Article

Abstract

Nile tilapia (Oreochromis niloticus) is one of the most important species in Tanzania for inland fisheries and aquaculture. Although indigenous to the country, it is only naturally distributed within the margins of Lake Tanganyika and peripheral water bodies. The widespread distribution across other parts of the country is a consequence of introductions that started in the 1950s. We investigated the population genetic structure of Nile tilapia across Tanzania using nuclear microsatellite markers, and compared the head and body morphology of populations using geometric morphometric analyses. We found the Lake Tanganyika population to be genetically distinct from the introduced populations. However, there were no clear morphological differences in head and body shape that distinguished the Lake Tanganyika population from the others. We conclude that the Lake Tanganyika population of Nile tilapia represents a unique genetic resource within the country. We suggest that Nile tilapia aquaculture within the Lake Tanganyika catchment should be restricted to the indigenous strain.

Keywords

Invasive species Hybridization Conservation genetics Stock structure 

Notes

Acknowledgements

The work was supported by Royal Society-Leverhulme Trust Africa Awards AA100023 and AA130107 to MJG, BPN and GFT, and a BBSRC award BB/M026736/1 to GFT and MJG. The Tanzania Commission for Science and Technology (COSTECH) provided fieldwork permits. We thank Carlos Gracida Juarez and staff from the Tanzania Fisheries Research Institute for contributions to fieldwork, and Jack Harrington for laboratory support.

Supplementary material

10641_2019_895_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 35 kb)

References

  1. Agnèse JF, Adépo-Gourène B, Abban EK, Fermon Y (1997) Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 79:88–96CrossRefGoogle Scholar
  2. Angienda PO, Lee HJ, Elmer KR, Abila R, Waindi EN, Meyer A (2011) Genetic structure and gene flow in an endangered native tilapia fish (Oreochromis esculentus) compared to invasive Nile tilapia (Oreochromis niloticus) in Yala swamp, East Africa. Conserv Genet 12:243–255CrossRefGoogle Scholar
  3. Bezault E, Balaresque P, Toguyeni A, Fermon Y, Araki H, Baroiller JF, Rognon X (2011) Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC Genet 12:102CrossRefGoogle Scholar
  4. Bolstad GH, Hindar K, Robertsen G, Jonsson B, Sægrov H, Diserud OH, Fiske P, Jensen AJ, Urdal K, Næsje TF, Barlaup BT (2017) Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. Nature Ecology & Evolution 1:0124CrossRefGoogle Scholar
  5. Bradbeer SJ, Harrington J, Watson H, Warraich A, Shechonge A, Smith A, Tamatamah R, Ngatunga BP, Turner GF, Genner MJ (2019) Limited hybridization between introduced and critically endangered indigenous tilapia fishes in northern Tanzania. Hydrobiologia 832:257–268CrossRefGoogle Scholar
  6. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S et al (2014) The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:375–381CrossRefGoogle Scholar
  7. Conte MA, Gammerdinger WJ, Bartie KL, Penman DJ, Kocher TD (2017) A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics 18:341CrossRefGoogle Scholar
  8. Danley PD, Husemann M, Ding B, DiPietro LM, Beverly EJ, Peppe DJ (2012) The impact of the geologic history and paleoclimate on the diversification of east African cichlids. Int J Evol Biol 2012: 574851, 1, 20Google Scholar
  9. Deines AM, Wittmann ME, Deines JM, Lodge DM (2016) Tradeoffs among ecosystem services associated with global tilapia introductions. Reviews in Fisheries Science and Aquaculture 24:178–191CrossRefGoogle Scholar
  10. EAFFRO (1967) The history and research results of the East African Freshwater Fisheries Research Organization from 1946 - 1966. East African Freshwater Fisheries Research Organization, Jinja, UgandaGoogle Scholar
  11. Eknath AE, Hulata G (2009) Use and exchange of genetic resources of Nile tilapia (Oreochromis niloticus). Rev Aquac 1:197–213CrossRefGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  13. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  14. FAO (2018) The state of world fisheries and aquaculture 2018 - meeting the sustainable development goals. FAO, RomeGoogle Scholar
  15. Faust E, Halvorsen KT, Andersen P, Knutsen H, André C (2018) Cleaner fish escape salmon farms and hybridize with local wrasse populations. R Soc Open Sci 5:171752CrossRefGoogle Scholar
  16. Frost LA, Evans BS, Jerry DR (2006) Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261:1056–1064CrossRefGoogle Scholar
  17. Fuerst PA, Mwanja WW, Kaufman L (2000) The genetic history of the introduced Nile tilapia of Lake Victoria (Uganda – E. Africa): the population structure of Oreochromis niloticus (Pisces: Cichlidae) revealed by DNA microsatellite markers. In Tilapia aquaculture in the 21st century. Proceedings from the fifth international symposium on Tilapia in aquaculture (eds. K. Fitzsimmons and J. Carvalho) Ministry of Agriculture, Brazil and Aquaculture CRSP. Rio de JaneiroGoogle Scholar
  18. Goudswaard PC, Witte F, Katunzi EFB (2002) The tilapiine fish stock of Lake Victoria before and after the Nile perch upsurge. J Fish Biol 60:838–856CrossRefGoogle Scholar
  19. Gu DE, Mu XD, Song HM, Luo D, Xu M, Luo JR, Hu YC (2014) Genetic diversity of invasive Oreochromis spp. (tilapia) populations in Guangdong province of China using microsatellite markers. Biochem Syst Ecol 65:198–204Google Scholar
  20. Hassanien HA, Gilbey J (2005) Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites. Aquac Res 36:1450–1457CrossRefGoogle Scholar
  21. Hoban SM, Hauffe HC, Pérez-Espona S, Arntzen JW, Bertorelle G, Bryja J, Frith K, Gaggiotti OE, Galbusera P, Godoy JA, Hoelzel AR (2013) Bringing genetic diversity to the forefront of conservation policy and management. Conserv Genet Resour 5:593–598CrossRefGoogle Scholar
  22. Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071CrossRefGoogle Scholar
  23. Kalinowski ST (2005) HP-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  24. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357CrossRefGoogle Scholar
  25. Kolding J, Medard M, Mkumbo O, van Zwieten PAM (2014) Status, trends and management of the Lake Victoria fisheries. In Welcomme, R. L, J. Valbo-Jørgensen and A.S. Halls (eds.). Inland fisheries evolution and management – case studies from four continents. FAO fisheries and aquaculture technical paper 579. FAO, RomeGoogle Scholar
  26. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191CrossRefGoogle Scholar
  27. Lenth R (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33CrossRefGoogle Scholar
  28. Lind CE, Ponzoni RW, Nguyen NH, Khaw HL (2012a) Selective breeding in fish and conservation of genetic resources for aquaculture. Reprod Domest Anim 47:255–263CrossRefGoogle Scholar
  29. Lind CE, Brummett RE, Ponzoni RW (2012b) Exploitation and conservation of fish genetic resources in Africa: issues and priorities for aquaculture development and research. Rev Aquac 4:125–141CrossRefGoogle Scholar
  30. Liu F, Sun F, Li J, Xia JH, Lin G, Tu RJ, Yue GH (2013) A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci. BMC Genomics 14:58CrossRefGoogle Scholar
  31. Ndiwa TC, Nyingi DW, Agnèse J-F (2014) An important natural genetic resource of Oreochromis niloticus (Linnaeus, 1758) threatened by aquaculture activities in Loboi drainage, Kenya. PLoS One 9:e106972CrossRefGoogle Scholar
  32. Nyingi D, De Vos L, Aman R, Agnèse J-F (2009) Genetic characterization of an unknown and endangered native population of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) (Cichlidae; Teleostei) in the Loboi swamp (Kenya). Aquaculture 297:57–63CrossRefGoogle Scholar
  33. Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29–39CrossRefGoogle Scholar
  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  35. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  36. Rohlf FJ (2015) The tps series of software. Hystrix, the Italian. J Mammal 26:1–4Google Scholar
  37. Romana-Eguia MRR, Ikeda M, Basiao ZU, Taniguchi N (2005) Genetic changes during mass selection for growth in Nile tilapia, Oreochromis niloticus (L.), assessed by microsatellites. Aquac Res 36:69–78Google Scholar
  38. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  39. Rutten MJM, Komen H, Deerenberg RM, Siwek M, Bovenhuis H (2004) Genetic characterization of four strains of Nile tilapia (Oreochromis niloticus L.) using microsatellite markers. Anim Genet 35:93–97CrossRefGoogle Scholar
  40. Saju JM, Lee WJ, Orban L (2010) Characterization of nine novel microsatellites isolated from Mozambique tilapia, Oreochromis mossambicus. Conserv Genet Resour 2:385–387CrossRefGoogle Scholar
  41. Shechonge A, Ngatunga BP, Tamatamah R, Bradbeer SJ, Harrington J, Ford AG, Turner GF, Genner MJ (2018) Losing cichlid fish biodiversity: genetic and morphological homogenization of tilapia following colonization by introduced species. Conserv Genet 19:1199–1209CrossRefGoogle Scholar
  42. Shechonge A, Ngatunga BP, Bradbeer SJ, Day JJ, Freer JJ, Ford AG, Kihedu J, Richmond T, Mzighani S, Smith AM, Sweke EA, Tamatamah R, Tyers A, Turner GF, Genner MJ (2019) Widespread colonization of Tanzanian catchments by introduced Oreochromis tilapia fishes: the legacy from decades of deliberate introduction. Hydrobiologia 832:235–253CrossRefGoogle Scholar
  43. Snoeks J, De Vos L, Van den Audenaerde DT (1997) The ichthyogeography of Lake Kivu. S Afr J Sci 93:579–584Google Scholar
  44. Sukmanomon S, Kamonrat W, Poompuang S, Nguyen TT, Bartley DM, May B, Na-Nakorn U (2012) Genetic changes, intra-and inter-specific introgression in farmed Nile tilapia (Oreochromis niloticus) in Thailand. Aquaculture 324:44–54CrossRefGoogle Scholar
  45. Trewavas E (1983) Tilapiine fishes of the genera Sarotherodon. In: Oreochromis and Danakilia. British museum (natural history), London. UKGoogle Scholar
  46. Van Steenberge M, Vanhove M, Risasi DM, N'sibula TM, Bukinga FM, Pariselle A, Gillardin C, Vreven E, Raeymaekers J, Huyse T, Volckaert F (2011) A recent inventory of the fishes of the north-western and central western coast of Lake Tanganyika (Democratic Republic Congo). Acta Ichthyol Piscat 41:201–214CrossRefGoogle Scholar
  47. Willoughby JR, Harder AM, Tennessen JA, Scribner KT, Christie MR (2018) Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol Ecol 27:4041–4051CrossRefGoogle Scholar
  48. Wringe BF, Jeffery NW, Stanley RR, Hamilton LC, Anderson EC, Fleming IA, Grant C, Dempson JB, Veinott G, Duffy SJ, Bradbury IR (2018) Extensive hybridization following a large escape of domesticated Atlantic salmon in the Northwest Atlantic. Communications Biology 1:108CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Aquatic Sciences and FisheriesUniversity of Dar es SalaamDar es SalaamTanzania
  2. 2.Tanzania Fisheries Research Institute (TAFIRI)Dar es SalaamTanzania
  3. 3.School of Biological SciencesUniversity of BristolBristolUK
  4. 4.Evolutionary and Environmental Genomics Group, School of Environmental SciencesUniversity of HullHullUK
  5. 5.School of Biological SciencesBangor UniversityBangorUK

Personalised recommendations