Advertisement

A field-based definition of the thermal preference during spawning for allis shad populations (Alosa alosa)

  • Alexis Paumier
  • Hilaire Drouineau
  • Laurent Carry
  • David José Nachón
  • Patrick Lambert
Article

Abstract

All around the world, diadromous fish are facing multiple anthropogenic pressures resulting in a global decline in these migratory species. In Gironde, the allis shad populations which were the most abundant in Europe are no exception and have dramatically declined since 2000. Failure in reproduction success is one of the proposed explanations for this collapse. In light of this, we studied the reproductive strategy of the allis shad populations in the Gironde watershed. We used an original methodology to define the thermal behavior of allis shad during reproduction using an electivity index for 14 years of field monitoring in two rivers, composed of daily reproduction activity and temperature. For the first time, this study deeply explores and defines the thermal preference of a shad species during the reproduction. A temperature preference between 14.5 °C and 23 °C by spawners during the reproduction was observed. Despite annual fluctuations, an overall similarity of temperature ranges between the two rivers was observed. The thermal preference matched with the thermal tolerance of early stages (16.2 °C to 24.8 °C) and confirms that allis shad spawners adopt behavioral rules of reproduction in order to maximize the survival of their offspring. The similarity of shad thermal behavior may indicate the phylogenetic basis of thermal preference for fish species.

Keywords

Diadromous fish Reproduction Temperature Thermal preference Fitness Allis shad 

Notes

Acknowledgments

This work was supported by the Regional Council of Nouvelle Aquitaine (FAUNA project) and the Water Agency of Adour-Garonne (SHAD’EAU project).

Author contributions

Paumier A. analysed the data and wrote the paper, Drouineau H. analysed the data and wrote the paper, Carry L. performed the field work, Nachón D.J wrote the paper and Patrick L. analysed the data and wrote the paper.

Supplementary material

10641_2019_874_MOESM1_ESM.docx (136 kb)
ESM 1 (DOCX 135 kb)

References

  1. Acolas M, Begoutanras M, Veron V et al (2004) An assessment of the upstream migration and reproductive behavior of allis shad (L.) using acoustic tracking. ICES J Mar Sci 61:1291–1304.  https://doi.org/10.1016/j.icesjms.2004.07.023 CrossRefGoogle Scholar
  2. Acolas M, Veron V, Jourdan H et al (2006) Upstream migration and reproductive patterns of a population of allis shad in a small river (L’Aulne, Brittany, France). ICES J Mar Sci 63:476–484.  https://doi.org/10.1016/j.icesjms.2005.05.022 CrossRefGoogle Scholar
  3. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRefGoogle Scholar
  4. Aunins A, Olney JE (2009) Migration and spawning of American Shad in the James River, Virginia. Trans Am Fish Soc 138:1392–1404.  https://doi.org/10.1577/T08-160.1 CrossRefGoogle Scholar
  5. Bagliniere, Sabatie, Rochard, et al (2003) The Allis Shad Alosa alosa: Biology, Ecology, Range and Status of Populations. In: Biology, Status and Conservation of the World’s Shads. American Fisheries Society, Bethesda, pp 85–102Google Scholar
  6. Beitinger TL, Fitzpatrick LC (1979) Physiological and ecological correlates of preferred temperature in fish. Am Zool 19:319–329CrossRefGoogle Scholar
  7. Berdahl A, Westley PAH, Quinn TP (2017) Social interactions shape the timing of spawning migrations in an anadromous fish. Anim Behav 126:221–229.  https://doi.org/10.1016/j.anbehav.2017.01.020 CrossRefGoogle Scholar
  8. Bray JR, Curtis JT (1957) An ordination of the upland Forest communities of southern Wisconsin. Ecol Monogr 27:325–349.  https://doi.org/10.2307/1942268 CrossRefGoogle Scholar
  9. Breder CM, Rosen DE (1972) Modes of Reproduction in Fishes. By C.M. Breder and D.E. Rosen. (Reprinted.). T.F.H. PublicationsGoogle Scholar
  10. Brett JR (1956) Some principles in the thermal requirements of fishes. Q Rev Biol 31:75–87.  https://doi.org/10.1086/401257 CrossRefGoogle Scholar
  11. Brett JR (1971) Energetic responses of Salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye Salmon ( Oncorhynchus nerkd). Am Zool 11:99–113.  https://doi.org/10.1093/icb/11.1.99 CrossRefGoogle Scholar
  12. Brunel T, Boucher J (2006) Pattern of recruitment variability in the geographical range of the exploited Northeast Atlantic fish species. J Sea Res 55:156–168.  https://doi.org/10.1016/j.seares.2005.07.003 CrossRefGoogle Scholar
  13. Cagnazzi D, Parra GJ, Westley S, Harrison PL (2013) At the heart of the industrial boom: Australian snubfin dolphins in the Capricorn coast, Queensland, need urgent conservation action. PLoS One 8:e56729.  https://doi.org/10.1371/journal.pone.0056729 CrossRefGoogle Scholar
  14. Carry L, Jo R (2012) Suivi de la reproduction de la grande alose sur la Garonne en 2011. MIGADOGoogle Scholar
  15. Cassou-Leins F (1981) Recherches sur la biologie et l’halieutique des migrateurs de la Garonne et principalement de l’alose. Institut national polytechnique (Toulouse)Google Scholar
  16. Cassou-Leins J., Cassou-Leins F, Boisneau F, Bagliniere J (2000) La reproduction. In: Les aloses (Alosa alosa et Alosa fallax spp), Inra-Cémagref. Baglinière and Elie, Paris, pp 73–92Google Scholar
  17. Chittenden ME (1976) Weight loss, mortality, feeding, and duration of residence of adult American shad, Alosa sapidissima, in fresh water. Fish Bull 74:151–157Google Scholar
  18. De Groot SJ (2002) A review of the past and present status of anadromous fish species in the Netherlands: is restocking the Rhine feasible? In: Nienhuis PH, Gulati RD (eds) Ecological restoration of aquatic and semi-aquatic ecosystems in the Netherlands (NW Europe). Springer Netherlands, Dordrecht, pp 205–218CrossRefGoogle Scholar
  19. DiMaggio MA, Pine HJ, Kenter LW, Berlinsky DL (2015) Spawning, Larviculture, and salinity tolerance of alewives and blueback herring in captivity. North Am J Aquac 77:302–311.  https://doi.org/10.1080/15222055.2015.1009590 CrossRefGoogle Scholar
  20. Drouineau H, Carter C, Rambonilaza M et al (2018) River Continuity Restoration and Diadromous Fishes: Much More than an Ecological Issue. Environ Manag.  https://doi.org/10.1007/s00267-017-0992-3
  21. Eliason EJ, Clark TD, Hague MJ et al (2011) Differences in thermal tolerance among sockeye Salmon populations. Science 332:109–112.  https://doi.org/10.1126/science.1199158 CrossRefGoogle Scholar
  22. Forsythe WC, Rykiel EJ, Stahl RS et al (1995) A model comparison for daylength as a function of latitude and day of year. Ecol Model 80:87–95.  https://doi.org/10.1016/0304-3800(94)00034-F CrossRefGoogle Scholar
  23. Freckleton RP, Jetz W (2009) Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data. Proc R Soc B Biol Sci 276:21–30.  https://doi.org/10.1098/rspb.2008.0905 CrossRefGoogle Scholar
  24. Fry FE (1964) Animals in aquatic environments: fishes. In: Handbook of Physiology, Amer. Physiol. Soc. Adolph & C.G. Wilber, Washington D.C, pp 715–728Google Scholar
  25. Fry FE (1971) The effect of environmental factors on the physiology of fish. Fish Physiol 6:1–98CrossRefGoogle Scholar
  26. Gaillagot A, Carry L (2014) Suivi de la reproduction de la grande alose sur la Garonne en 2014. MIGADOGoogle Scholar
  27. Golovanov VK (2006) The ecological and evolutionary aspects of thermoregulation behavior on fish. J Ichthyol 46:S180–S187.  https://doi.org/10.1134/S0032945206110075 CrossRefGoogle Scholar
  28. Golovanov VK (2013) Ecophysiological patterns of distribution and behavior of freshwater fish in thermal gradients. J Ichthyol 53:252–280.  https://doi.org/10.1134/S0032945213030016 CrossRefGoogle Scholar
  29. Harrison PM, Gutowsky LFG, Martins EG et al (2016) Temporal plasticity in thermal-habitat selection of burbot Lota lota a diel-migrating winter-specialist: Lota Lota thermal habitat selection. J Fish Biol 88:2111–2129.  https://doi.org/10.1111/jfb.12990 CrossRefGoogle Scholar
  30. Hasnain SS, Shuter BJ, Minns CK (2013) Phylogeny influences the relationships linking key ecological thermal metrics for North American freshwater fish species. Can J Fish Aquat Sci 70:964–972.  https://doi.org/10.1139/cjfas-2012-0217 CrossRefGoogle Scholar
  31. Hjort J (1914) Fluctuations in the great fisheries of northern Europe, viewed in the light of biological research. Rapp Procès-Verbaux La Réun Cons Perm Int Pour Explor Mer 20:1–228Google Scholar
  32. Hjort J (1926) Fluctuations in the year classes of important food fishes. ICES J Mar Sci 1:5–38.  https://doi.org/10.1093/icesjms/1.1.5 CrossRefGoogle Scholar
  33. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New YorkGoogle Scholar
  34. Hodgson S, Quinn TP (2002) The timing of adult sockeye salmon migration into fresh water: adaptations by populations to prevailing thermal regimes. Can J Zool 80:542–555.  https://doi.org/10.1139/z02-030 CrossRefGoogle Scholar
  35. Houde ED (1989) Subtleties and episodes in the early life of fishes. J Fish Biol 35:29–38.  https://doi.org/10.1111/j.1095-8649.1989.tb03043.x CrossRefGoogle Scholar
  36. Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4:131–135.  https://doi.org/10.1016/0169-5347(89)90211-5 CrossRefGoogle Scholar
  37. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61.  https://doi.org/10.1016/S0169-5347(99)01764-4 CrossRefGoogle Scholar
  38. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427.  https://doi.org/10.1101/SQB.1957.022.01.039 CrossRefGoogle Scholar
  39. IPCC (2014) Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change: The Physical Science Basis Summary for PolicymakerGoogle Scholar
  40. Jatteau P, Drouineau H, Charles K et al (2017) Thermal tolerance of allis shad ( Alosa alosa ) embryos and larvae: modeling and potential applications. Aquat Living Resour 30:2.  https://doi.org/10.1051/alr/2016033 CrossRefGoogle Scholar
  41. Johnson JA, Kelsch SW (1998) Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environ Biol Fish 53:447–458.  https://doi.org/10.1023/A:1007425215669 CrossRefGoogle Scholar
  42. Kearney M (2006) Habitat, environment and niche: what are we modelling? Oikos 115:186–191.  https://doi.org/10.1111/j.2006.0030-1299.14908.x CrossRefGoogle Scholar
  43. Koizumi I, Shimatani IK (2016) Socially induced reproductive synchrony in a salmonid: an approximate Bayesian computation approach. Behav Ecol 27:1386–1396.  https://doi.org/10.1093/beheco/arw056 CrossRefGoogle Scholar
  44. Lambert P, Martin Vandembulcke D, Rochard E et al (2001) Âge à la migration de reproduction des géniteurs de trois cohortes de grandes aloses (alosa alosa) dans le bassin versant de la garonne (france). Bull Fr Peche Piscic:973–987.  https://doi.org/10.1051/kmae:2001031
  45. Lambert P, Jatteau P, Paumier A et al (2018) Allis shad adopts an efficient spawning tactic to optimise offspring survival. Environ Biol Fish 101:315–326.  https://doi.org/10.1007/s10641-017-0700-4 CrossRefGoogle Scholar
  46. Lassalle G, Rochard E (2009) Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Glob Chang Biol 15:1072–1089.  https://doi.org/10.1111/j.1365-2486.2008.01794.x CrossRefGoogle Scholar
  47. Lassalle G, Béguer M, Beaulaton L, Rochard E (2008) Diadromous fish conservation plans need to consider global warming issues: an approach using biogeographical models. Biol Conserv 141:1105–1118.  https://doi.org/10.1016/j.biocon.2008.02.010 CrossRefGoogle Scholar
  48. Leggett WC, Carscadden JE (1978) Latitudinal variation in reproductive characteristics of American Shad ( Alosa sapidissima ): evidence for population specific life history strategies in fish. J Fish Res Board Can 35:1469–1478.  https://doi.org/10.1139/f78-230 CrossRefGoogle Scholar
  49. Limburg KE, Waldman JR (2009) Dramatic declines in North Atlantic diadromous fishes. BioScience 59:955–965.  https://doi.org/10.1525/bio.2009.59.11.7 CrossRefGoogle Scholar
  50. Lyons J, Rypel AL, Rasmussen PW et al (2015) Trends in the reproductive phenology of two Great Lakes fishes. Trans Am Fish Soc 144:1263–1274.  https://doi.org/10.1080/00028487.2015.1082502 CrossRefGoogle Scholar
  51. Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource. Am Zool 19:331–343.  https://doi.org/10.1093/icb/19.1.331 CrossRefGoogle Scholar
  52. Manly BFJ (1974) A model for certain types of selection experiments. Biometrics 30:281.  https://doi.org/10.2307/2529649 CrossRefGoogle Scholar
  53. Martin J, Rougemont Q, Drouineau H et al (2015) Dispersal capacities of anadromous Allis shad population inferred from a coupled genetic and otolith approach. Can J Fish Aquat Sci 72:991–1003.  https://doi.org/10.1139/cjfas-2014-0510 CrossRefGoogle Scholar
  54. McDowall RM (1988) Diadromy in fishes: migrations between freshwater and marine environments. Timber Press, PortlandGoogle Scholar
  55. Menneson-Boisneau C, Boisneau P (1990) Migration, répartition, reproduction, carastéristiques biologiques et taxonomie des aloses (Alosa sp) dasn le bassin de la Loire. Rennes I and Paris XIIGoogle Scholar
  56. Nachón DJ, Barca S, Silva S et al (2016) Preliminary data on feeding behavior of young-of-the-year twaite shad, Alosa fallax (Lacepede, 1803), during their downstream migration in two rivers of the NW of the Iberian Peninsula. Fishes Mediterr Environ 2016.  https://doi.org/10.29094/FiSHMED.2016.006
  57. Ohlberger J, Mehner T, Staaks G, Hölker F (2008) Temperature-related physiological adaptations promote ecological divergence in a sympatric species pair of temperate freshwater fish, Coregonus spp. Funct Ecol 22:501–508.  https://doi.org/10.1111/j.1365-2435.2008.01391.x CrossRefGoogle Scholar
  58. Olney JE, Latour RJ, Watkins BE, Clarke DG (2006) Migratory behavior of American Shad in the York River, Virginia, with implications for estimating In-River exploitation from tag recovery data. Trans Am Fish Soc 135:889–896.  https://doi.org/10.1577/T05-101.1 CrossRefGoogle Scholar
  59. Otto RG, Kitchel MA, Rice JO (1976) Lethal and preferred temperatures of the alewife (Alosa pseudoharengus) in Lake Michigan. Trans Am Fish Soc 105:96–106.  https://doi.org/10.1577/1548-8659(1976)105<96:LAPTOT>2.0.CO;2 CrossRefGoogle Scholar
  60. Peck MA, Kanstinger P, Holste L, Martin M (2012) Thermal windows supporting survival of the earliest life stages of Baltic herring (Clupea harengus). ICES J Mar Sci 69:529–536.  https://doi.org/10.1093/icesjms/fss038 CrossRefGoogle Scholar
  61. Pledger S, Geange S, Hoare J, Pérez-Matus A (2007) Resource selection: tests and estimation using null models. Victoria University of Wellington, WellingtonGoogle Scholar
  62. Quinn TP, Adams DJ (1996) Environmental changes affecting the migratory timing of American Shad and Sockeye Salmon. Ecology 77:1151–1162.  https://doi.org/10.2307/2265584 CrossRefGoogle Scholar
  63. Quinn TP, Hodgson S, Peven C (1997) Temperature, flow, and the migration of adult sockeye salmon (Oncorhynchus nerka) in the Columbia River. Can J Fish Aquat Sci 54:1349–1360.  https://doi.org/10.1139/f97-038 CrossRefGoogle Scholar
  64. R Core Team (2018) R: A Language and Environment for Statistical Computing. https://www.Rproject.org/
  65. Randon M, Daverat F, Bareille G et al (2017) Quantifying exchanges of Allis shads between river catchments by combining otolith microchemistry and abundance indices in a Bayesian model. ICES J Mar Sci 75:9–21.  https://doi.org/10.1093/icesjms/fsx148 CrossRefGoogle Scholar
  66. Righton D, Andersen K, Neat F et al (2010) Thermal niche of Atlantic cod Gadus morhua: limits, tolerance and optima. Mar Ecol Prog Ser 420:1–13.  https://doi.org/10.3354/meps08889 CrossRefGoogle Scholar
  67. Rochard E, Castelnaud G, Lepage M (1990) Sturgeons (Pisces: Acipenseridae); threats and prospects. J Fish Biol 37:123–132.  https://doi.org/10.1111/j.1095-8649.1990.tb05028.x CrossRefGoogle Scholar
  68. Rome LC (2007) The effect of temperature and thermal acclimation on the sustainable performance of swimming scup. Philos Trans R Soc B Biol Sci 362:1995–2016.  https://doi.org/10.1098/rstb.2007.2083 CrossRefGoogle Scholar
  69. Rougier T, Lambert P, Drouineau H et al (2012) Collapse of allis shad, Alosa alosa, in the Gironde system (Southwest France): environmental change, fishing mortality, or Allee effect? ICES J Mar Sci 69:1802–1811.  https://doi.org/10.1093/icesjms/fss149 CrossRefGoogle Scholar
  70. Sinclair BJ, Marshall KE, Sewell MA et al (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19:1372–1385.  https://doi.org/10.1111/ele.12686 CrossRefGoogle Scholar
  71. Taverny C, Elie P (2008) Les lamproies en France - Guide pratique d’identification et de détermination des écophases, des espèces et des habitats, tude Cemagref, Groupement de BordeauxGoogle Scholar
  72. Toresen R, Østvedt O (2000) Variation in abundance of Norwegian spring-spawning herring (Clupea harengus, Clupeidae) throughout the 20th century and the influence of climatic fluctuations. Fish Fish 1:231–256CrossRefGoogle Scholar
  73. Walburg C, Nichols P (1967) Biology and Management of the American Shad and Status of the Fisheries, Atlantic Coast of the United States, 1960. U S Fish Wildl Serv Spec Sci Rep-FishGoogle Scholar
  74. Wehrly KE, Wang L, Mitro M (2007) Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Trans Am Fish Soc 136:365–374.  https://doi.org/10.1577/T06-163.1 CrossRefGoogle Scholar
  75. Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673.  https://doi.org/10.1093/beheco/aru183 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.UR EABXIrsteaCestas CedexFrance
  2. 2.Association MIGADOLe PassageFrance

Personalised recommendations