Ecomorphological variations and food supply drive trophic relationships in the fish fauna of a pristine neotropical stream

  • Mara Cristina BaldassoEmail author
  • Luciano Lazzarini Wolff
  • Mayara Pereira Neves
  • Rosilene Luciana Delariva


The relationships among the morphology, trophic ecology, and use of food resources by fish fauna in a pristine stream in Iguaçu National Park (INP), Brazil were evaluated. We expected that the trophic patterns would be explained by ecomorphological variations among fishes and the availability of food resources. Sampling was conducted quarterly from May 2015 to April 2016 using electrofishing. The stomach contents of 599 individuals belonging to nine species were analyzed using the volumetric method. Thirty-two morphological measures related to trophic ecology and body morphology were then converted into 10 ecomorphological indices. The fish assemblage consumed aquatic (Diptera, Ephemeroptera) and terrestrial (Hymenoptera) insects, other aquatic invertebrates, plants, and detritus/sediment. Therefore, the consumption frequencies of these food items were considered representative of their environmental availability. Furthermore, the fish fauna presented wide trophic niche breadths and little diet overlap. Principal component analysis (PCA) was used to classify the fishes’ ecomorphological variations into three ecomorphotypes. The benthonic ecomorphotype comprised species with more depressed bodies that eat detritus/algae and dipteran larvae (Ancistrus mullerae and Corydoras carlae). The nektobenthic ecomorphotype included species with elongated bodies and wider heads and mouths that eat aquatic insects and Aeglidae (Trichomycterus stawiarski and Rhamdia spp.). The nektonic ecomorphotype contained species with more compressed bodies and terminal mouths, which are generalist consumers of allochthonous and autochthonous resources. Morphology was significantly correlated with diet, which suggests that ecomorphological variations together with the availability of food in the environment are the main mechanisms underlying trophic segregation and coexistence among species.


Freshwater fish Morphology Diet Niche breadth Coexistence 



We thank the Universidade Estadual do Oeste do Paraná (UNIOESTE) for the support needed to perform the analyses, Fundação Araucária for granting a scientific-initiation scholarship to the first author, and members of the LIEB (Laboratory of Ichthyology, Ecology and Biomonitoring) at UNIOESTE for helping with field collections and the processing of parts of the studied materials.

Compliance with ethical standards

Ethical approval

Fish were collected with authorization from the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (license numbers 30,182 and 25,039–1). All sampling and handling procedures were approved by the Ethics Committee on Animal Use of the Universidade Estadual do Oeste do Paraná (CEUA) in accordance with their protocols for the ethical and methodological use of fish (project approved on February 11, 2014).

Supplementary material

10641_2019_871_MOESM1_ESM.doc (50 kb)
ESM 1 (DOC 49 kb)


  1. Abelha MCF, Agostinho AA, Goulart E (2001) Plasticidade trófica em peixes de água doce. Acta Sci 23:425–434. Google Scholar
  2. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Pérez MHS, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403–414. CrossRefGoogle Scholar
  3. Adite A, Winemiller KO (1997) Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa. Ecoscience 4:6–23. CrossRefGoogle Scholar
  4. Allan JD (1995) Stream ecology: structure and function of running waters. Chapman and Hall, LondonCrossRefGoogle Scholar
  5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46. Google Scholar
  6. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. CrossRefGoogle Scholar
  7. Araújo MS, Martins EG, Cruz LD, Fernandes FR, Linhares AX, Dos Reis SF, Guimarães PR Jr (2010) Nested diets: a novel pattern of individual-level resource use. Oikos 119:81–88. CrossRefGoogle Scholar
  8. Araújo MS, Bolnick DI, Craig AL (2011) The ecological causes of individual specialization. Ecol Lett 14:948–958. CrossRefGoogle Scholar
  9. Autodesk (2014) AutoCAD: graphic computation (Version 2014) [Software]. Autodesk Inc., San RafaelGoogle Scholar
  10. Balon EK, Crawford SS, Lelek A (1986) Fish communities of the upper Danube River (Germany, Austria) prior to the new Rhein-Main-Donau connection. Environ Biol Fish 15:243–271Google Scholar
  11. Barili E, Agostinho AA, Gomes LC, Latini JD (2011) The coexistence of fish species in streams: relationships between assemblage attributes and trophic and environmental variables. Environ Biol Fish 92:41. CrossRefGoogle Scholar
  12. Barreto AP, Aranha JMR (2006) Alimentação de quatro espécies de Characiformes de um riacho da Floresta Atlântica, Guaraqueçaba, Paraná, Brasil. Rev Bras Zool 23:779–788. CrossRefGoogle Scholar
  13. Barros G, Zuanon J, Deus C (2016) Effects of species co-occurrence on the trophic-niche breadth of characids in Amazon forest streams. J Fish Biol 90:326–340. CrossRefGoogle Scholar
  14. Basterretxea G, Catalán IA, Jordi A, Álvarez I, Palmer M, Sabatés A (2013) Dynamic regulation of larval fish self-recruitment in a marine protected area. Fish Oceanogr 22:477–495. CrossRefGoogle Scholar
  15. Baumgartner GCS, Pavanelli CS, Baumgartner D, Bifi AG, Debona T, Frana VA (2012) Peixes do baixo Rio Iguaçu. Eduem, MaringáCrossRefGoogle Scholar
  16. Bicudo CEM, Bicudo RMT (1970) Algas de águas continentais brasileiras chave ilustrada para identificação de gêneros. Fundação Brasileira para o Desenvolvimento do Ensino de Ciências, São PauloGoogle Scholar
  17. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Amer Nat 161:1–28. doi: PMID: 12650459
  18. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  19. Brown BL (2007) Habitat heterogeneity and disturbance influence patterns of community temporal variability in a small temperate stream. Hydrobiologia 586:93–106. CrossRefGoogle Scholar
  20. Carvalho DR, Castro DMP, Callisto M, Moreira MZ, Pompeu PS (2017) The trophic structure of fish communities from streams in the Brazilian Cerrado under different land uses: an approach using stable isotopes. Hydrobiologia 795:199–217. CrossRefGoogle Scholar
  21. Casatti L (2002) Alimentação dos peixes em um riacho do Parque Estadual Morro do Diabo, bacia do Alto Paraná, sudeste do Brasil. Biota Neotrop 2:1–14. CrossRefGoogle Scholar
  22. Casatti L (2010) Alterações no código florestal brasileiro: impactos potenciais sobre a ictiofauna. Biota Neotrop 10:31–34. CrossRefGoogle Scholar
  23. Casatti L, Castro RMC (1998) A fish community of the São Francisco River headwaters riffles, southeastern Brazil. Ichthyol Explor Freshw 9:229–242Google Scholar
  24. Casatti L, Castro RMC (2006) Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotrop Ichthyol 4:203–214. CrossRefGoogle Scholar
  25. Casatti L, Teresa FB, Gonçalves-Souza T, Bessa E, Manzotti AR, Gonçalves CS, Zeni JO (2012) From forests to cattail: how does the riparian zone influence stream fish? Neotrop Ichthyol 10:205–214. CrossRefGoogle Scholar
  26. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, LondonCrossRefGoogle Scholar
  27. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. CrossRefGoogle Scholar
  28. Cochran-Biederman JL, Winemiller KO (2010) Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environ Biol Fish 88:143–152. CrossRefGoogle Scholar
  29. Collen B, Whitton F, Dyer EE, Baillie JEM, Cumberlidge N, Darwall WRT, Pollock C, Richman NI, Soulsby AM, Böhm M (2014) Global patterns of freshwater species diversity, threat and endemism. Glob Ecol Biogeogr 23:40–51. CrossRefGoogle Scholar
  30. Connell JH (1983) On the prevalence and relative importance of interspecifc competition: evidence from feld experiments. Am Nat 122:661–696. CrossRefGoogle Scholar
  31. Correa SB, Winemiller KO (2014) Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95:210–224. CrossRefGoogle Scholar
  32. Corrêa CE, Albrecht MP, Hahn NS (2011) Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiabá River basin. Neotrop Ichthyol 9:637–646. CrossRefGoogle Scholar
  33. Dala-Corte RB, Becker FG, Melo AS (2016) Riparian integrity affects diet and intestinal length of a generalist fish species. Mar Freshw Res 68:1272–1281. CrossRefGoogle Scholar
  34. Delariva RL, Agostinho AA (2001) Relationship between morphology and diets of six neotropical loricariids. J Fish Biol 58:832–847. CrossRefGoogle Scholar
  35. Delariva RL, Hahn NS, Kashiwaqui EAL (2013) Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects. Neotrop Ichthyol 11:891–904. CrossRefGoogle Scholar
  36. Dias RM, Ortega JCG, Gomes LC, Agostinho AA (2017) Trophic relationships in fish assemblages of Neotropical floodplain lakes: selectivity and feeding overlap mediated by food availability. Iheringia Sér Zool 107:e2017035. Google Scholar
  37. Douglas ME, Matthews WJ (1992) Does morphology predict ecology? Hypothesis testing within a freshwater stream fish assemblage. Oikos 65:213–224. CrossRefGoogle Scholar
  38. Esteves KE, Aranha JMR (1999) Ecologia trófica de peixes de riachos. In: Caramaschi EP, Mazzoni R, Peres-Neto PR (eds) Ecologia de peixes de riachos. Série Oecologia Brasiliensis, Rio de Janeiro, pp 157–182Google Scholar
  39. Esteves KE, Lobo AVP, Faria MDR (2008) Trophic structure of a fish community along environmental gradients of a subtropical river (Paraitinga River, Upper Tietê River Basin, Brazil). Hydrobiologia 598:373–387. CrossRefGoogle Scholar
  40. Feow (2018) Freshwater Ecoregions of the World- 346: Iguassu. Available at Accessed 2 Aug 2018
  41. Ferreira A, Paula FR, Ferraz SFB, Gerhard P, Kashiwaqui EAL, Cyrino JEP, Martinelli LA (2011) Riparian coverage affects diets of characids in Neotropical streams. Ecol Freshw Fish 21:12–22. CrossRefGoogle Scholar
  42. Franssen NR, Goodchild CG, Shepard DB (2015) Morphology predicting ecology: incorporating new methodological and analytical approaches. Environ Biol Fish 98:713–724. CrossRefGoogle Scholar
  43. Gatz AJ Jr (1979) Ecological morphology of freshwater stream fishes. Tulane Stud Zool Bot 21:91–124Google Scholar
  44. Gerking SD (1994) Feeding ecology of fish. Academic Press, San DiegoGoogle Scholar
  45. Gotelli NJ, Entsminger GL (2006) EcoSim: null models software for ecology. Version 7. Acquired intelligence and Kesey- bear. Jericho, Vermont, USA. Http:// Accessed 30 Oct 2013
  46. Graça WJ, Pavanelli CS (2007) Peixes da planície de inundação do alto rio Paraná e áreas adjacentes. Eduem, MaringáGoogle Scholar
  47. Grossman GD (1986) Food resources partitioning in a rocky intertidal fish assemblage. J Biol 1:317–355. Google Scholar
  48. Hammer DA, Harper T, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  49. Hora SL (1922) Structural modifications in the fish of mountain torrents. Rec Indian Museum 24:31–61Google Scholar
  50. Hugueny B, Pouilly M (1999) Morphological correlates of diet in an assemblage of west African freshwater fishes. J Fish Biol 54:1310–1325. CrossRefGoogle Scholar
  51. Hyslop EJ (1980) Stomach contents analysis: a review of methods and their application. J Fish Biol 17:411–429. CrossRefGoogle Scholar
  52. Instituto Chico Mendes De Conservação Da Biodiversidade, ICMBio. Parque Nacional do Iguaçu (2009) Accessed 28 Oct 2017
  53. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. CrossRefGoogle Scholar
  54. Joly CA, Aidar MPM, Klink CA, McGrath DG, Moreira AG, Moutinho P, Nepstad DC, Oliveira AA, Pott A, Rodal MJN, Sampaio EVSB (1999) Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Cienc Cult 51:331–348Google Scholar
  55. Kassam D, Adams DC, Yamaoka K (2004) Functional significance of variation in trophic morphology within feeding microhabitat-differentiated cichlid species in Lake Malawi. Anim Biol 54:77–90. CrossRefGoogle Scholar
  56. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. CrossRefGoogle Scholar
  57. Leitão RP, Sánchez-Botero JV, Kasper D, Trivério-Cardoso V, Araújo CM, Zuanon J, Caramaschi EP (2015) Microhabitat segregation and fine ecomorphological dissimilarity between two closely phylogenetically related grazer fishes in an Atlantic Forest stream, Brazil. Environ Biol Fish 98:2009–2019. CrossRefGoogle Scholar
  58. Leite GF, Silva FTC, Gonçalves JFJ, Salles P (2015) Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia 762:223–238. CrossRefGoogle Scholar
  59. Lobón-Cerviá J, Mazzoni R, Rezende CF (2016) Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage. J Fish Biol 89:50–64. CrossRefGoogle Scholar
  60. Lopes VG, Nessimian JL, Da-Silva ER, Gomes JHC, Dias ACI, Souza LC, Branco CW (2016) Habitat heterogeneity on feeding habit of two sympatric and congeneric characidae fishes in two tropical reservoirs. Iheringia Sér Zool 106:e2016012. CrossRefGoogle Scholar
  61. Luz-Agostinho KD, Bini LM, Fugi R, Agostinho AA, Júlio HF Jr (2006) Food spectrum and trophic structure of the ichthyofauna of Corumbá reservoir, Paraná river basin, Brazil. Neotrop Ichthyol 4:61–68. CrossRefGoogle Scholar
  62. MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598. CrossRefGoogle Scholar
  63. Marrero C (1994) Métodos para Cuantificar Contenidos Estomacales en Peces. Talleres Gráficos de Liberil, CaracasGoogle Scholar
  64. Mazzoni R, Marques PS, Rezende CF, Iglesias-Rios R (2012) Niche enlargement as a consequence of coexistence: a case study. Braz J Biol 72:267–274. CrossRefGoogle Scholar
  65. Mérona D, Santos GM, Almeida RG (2001) Short term effects of Tucuruí dam (Amazônia, Brazil) on the trophic organization of fish communities. Environ Biol Fish 60:375–392. CrossRefGoogle Scholar
  66. Mérona B, Vigouroux R, Horeau V (2003) Changes in food resources and their utilization by fish assemblages in a large tropical reservoir in South America (petit-Saut dam, French Guiana). Acta Oecol 24:147–156. CrossRefGoogle Scholar
  67. Mise FT, Fugi R, Pagotto JPA, Goulart E (2013a) The coexistence of endemic species of Astyanax (Teleotei: Characidae) is propitiated by ecomorphological and trophic variations. Biota Neotrop 13:21–28. CrossRefGoogle Scholar
  68. Mise FT, Tencatt LFC, Souza F (2013b) Ecomorphological differences between Rhamdia (Bleeker, 1858) populations from the Iguaçu River basin. Biota Neotrop 13:99–104. CrossRefGoogle Scholar
  69. Mugnai R, Nessimian JL, Baptista DF (2010) Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Technical Boocks, Rio de JaneiroGoogle Scholar
  70. Neves MP, Delariva RL, Wolff LL (2015) Diet and ecomorphological relationships of an endemic, species-poor fish assemblage in a stream in the Iguaçu National Park. Neotrop Ichthyol 13:245–254. CrossRefGoogle Scholar
  71. Neves MP, Da Silva JC, Baumgartner D, Baumgartner G, Delariva RL (2018) Is resource partitioning the key? The role of intra-interspecific variation in coexistence among five small endemic fish species (Characidae) in subtropical rivers. J Fish Biol 93:238–249. CrossRefGoogle Scholar
  72. Novakowski GS, Hahn NS, Fugi R (2008) Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop Ichthyol 6:567–576. CrossRefGoogle Scholar
  73. Oksanen J, Kindt R, Legendre P, O'Hara B, Stevens MHH, Oksanen M, Suggests M (2007) The vegan package. Community Ecology Package. R package version 2.4–2. Retrieved from
  74. Oliveira EF, Goulart E, Breda L, Minte-Vera CV, Paiva LRS, Vismara MR (2010) Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotrop Ichthyol 8:569–586. CrossRefGoogle Scholar
  75. Pagotto JPA, Goulart E, Oliveira EF, Yamamura CB (2011) Trophic ecomorphology of Siluriformes (Pisces, Osteichthyes) from a tropical stream. Braz J Biol 71:469–479. CrossRefGoogle Scholar
  76. Pankhurst NW (1989) The relationship of ocular morphology to feeding modes and activity periods in shallow marine teleosts from New Zealand. Environ Biol Fishes 26(3):201–211Google Scholar
  77. Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4:53–74. CrossRefGoogle Scholar
  78. Pinto TLF, Uieda VS (2007) Aquatic insects selected as food for fishes of a tropical stream: are there spatial and seasonal differences in their selectivity? Acta Limnol Bras 19:67–78Google Scholar
  79. Portella T, Lobón-Cerviá J, Manna LR, Bergallo HG, Mazzoni R (2016) Eco-morphological attributes and feeding habits in coexisting characins. J Fish Biol 90:129–146. CrossRefGoogle Scholar
  80. Pouilly M, Lino F, Bretenoux JG, Rosales C (2003) Dietary-morphological relationships in a fish assemblage of the Bolivian Amazonian floodplain. J Fish Biol 62:1137–1158. CrossRefGoogle Scholar
  81. Pouilly M, Barrera S, Rosales C (2006) Changes of taxonomic and trophic structure of sh assemblages along an environmental gradient in the upper Beni watershed (Bolivia). J Fish Biol 68:137–156. CrossRefGoogle Scholar
  82. Prado AV, Goulart E, Pagotto J (2016) Ecomorphology and use of food resources: inter-and intraspecific relationships of fish fauna associated with macrophyte stands. Neotrop Ichthyol 14:e150140. CrossRefGoogle Scholar
  83. Prejs A, Prejs K (1987) Feeding of tropical freshwater fishes: seasonality in resource availability and resource use. Oecologia 71:397–404. CrossRefGoogle Scholar
  84. Pusey BJ, Arthington AH (2003) Importance of the riparian zone to the conservation and management of freshwater fish: a review. Mar Freshw Res 54:1–16. CrossRefGoogle Scholar
  85. Quirino BA, Carniatto N, Gaiotto JV, Fugi R (2015) Seasonal variation in the use of food resources by small fishes inhabiting the littoral zone in a Neotropical floodplain lake. Aquat Ecol 49:431–440. CrossRefGoogle Scholar
  86. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL Accessed 10 Aug 2015
  87. Ríos SL, Bailey RC (2006) Relationship between riparian vege- tation and stream benthic communities at three spatial scales. Hydrobiologia 553:153–160. CrossRefGoogle Scholar
  88. Rondineli GR, Carmassi AL, Braga FMS (2009) Population biology of Trichomycterus sp. (Siluriformes, Trichomycteridae) in Passa Cinco stream, Corumbataí River sub-basin, São Paulo state, southeastern Brazil. Braz J Biol 69:925–934. CrossRefGoogle Scholar
  89. Ross ST (1986) Resource partitioning in fsh assemblages: a review of feld studies. Copeia 1986:352–388. CrossRefGoogle Scholar
  90. Ruaro R, Gubiani EA, Cunico AM, Moretto YP, Pitágoras A (2016) Comparison of fish and macroinvertebrates as bioindicators of Neotropical streams. Environ Monit Assess 188:235–255. CrossRefGoogle Scholar
  91. Russo MR, Ferreira A, Dias RM (2002) Disponibilidade de invertebrados aquáticos para peixes bentófagos de dois riachos da bacia do rio Iguaçu, Estado do Paraná, Brasil. Acta Sci Anim Sci 24:411–417. Google Scholar
  92. Sabino J, Castro RMC (1990) Alimentação, período de atividade e distribuição espacial dos peixes de um riacho da floresta Atlântica (Sudeste do Brasil). Rev Bras Biol 50:23–36Google Scholar
  93. Sampaio ALA, Pagotto JPA, Goulart E (2013) Relationships between morphology, diet and spatial distribution: testing the effects of intra and interspecifc morphological variations on the patterns of resource use in two Neotropical cichlids. Neotrop Ichthyol 11:351–360. CrossRefGoogle Scholar
  94. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39. CrossRefGoogle Scholar
  95. Schoener TW (1982) The controversy over interspecifc competition: despite spirited criticism, competition continues to occupy a major domain in ecological thought. Am Nat 70:586–595. Accessed 15 Sept 2015Google Scholar
  96. Silva JC, Gubiani EA, Delariva RL (2014) Use of food resources by small fish species in Neotropical rivers: responses to spatial and temporal variations. Zoologia (Curitiba) 3:435–444. CrossRefGoogle Scholar
  97. Silva JC, Gubiani ÉA, Neves MP, Delariva RL (2017) Coexisting small fish species in lotic neotropical environments: evidence of trophic niche differentiation. Aquat Ecol 51:275–288. CrossRefGoogle Scholar
  98. Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82CrossRefGoogle Scholar
  99. Teixeira I, Bennemann ST (2007) Ecomorfologia refletindo a dieta dos peixes em um reservatório no sul do Brasil. Biota Neotrop 7:67–76CrossRefGoogle Scholar
  100. Uieda VS, Alves MIB, Silva EI (2016) Invertebrados bentônicos: relação entre estrutura da fauna e características do mesohabitat/benthic invertebrates: relationship between the fauna structure and mesohabitat features. Rev Ambient Água 11:676–688CrossRefGoogle Scholar
  101. Vitt LJ, Zani PA, Lima ACM (1997) Heliotherms in tropical rain forest: the ecology of Kentropyx calcarata (Teiidae) and Mabuya nigropunctata (Scincidae) in the Curua-Una of Brazil. J Trop Ecol 13:22. CrossRefGoogle Scholar
  102. Wainwright PC, Reilly SM (1994) Ecological morphology: integrative organismal biology. University of Chicago Press, ChicagoGoogle Scholar
  103. Watson DJ, Balon EK (1984) Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J Fish Biol 25:371–384. CrossRefGoogle Scholar
  104. Willis SC, Winemiller KO, Lopez-Fernadez H (2005) Habitat structural complexity and morphological diversity of fish assemblages in a Neotropical floodplain river. Oecologia 142:284–295. CrossRefGoogle Scholar
  105. Winemiller KO (1991) Ecomorphological diversification in lowland freshwater fish assemblages from five biotic regions. Ecol Monogr 61:343–365. CrossRefGoogle Scholar
  106. Wolff LL, Carniatto N, Hahn NS (2013) Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil. Neotrop Ichthyol 11:375–386. CrossRefGoogle Scholar
  107. Wootton RJ (1998) The ecology of teleost fishes. Kluwer Academic Publisher, DordrechtGoogle Scholar
  108. Zupo V, Alexander TJ, Edgar GJ (2017) Relating trophic resources to community structure: a predictive index of food availability. R Soc Open Sci 4:160515. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Centro de Ciências Biológicas e da SaúdeUniversidade Estadual do Oeste do ParanáCascavelBrazil
  2. 2.Centro de Ciências Biológicas e da SaúdeUniversidade Estadual do Oeste do ParanáCascavelBrazil
  3. 3.Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de BiociênciasUniversidade Federal do Rio Grande do Sul, UFRGSPorto AlegreBrazil
  4. 4.Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Conservação e Manejo de Recursos NaturaisUniversidade Estadual do Oeste do ParanáCascavelBrazil

Personalised recommendations