7-Chloroquinoline-1,2,3-triazoyl carboxamides induce cell cycle arrest and apoptosis in human bladder carcinoma cells

  • Mariana S. Sonego
  • Natália V. Segatto
  • Lucas Damé
  • Mariana Fronza
  • Carolina B. Gomes
  • Thais Larré Oliveira
  • Fabiana Kömmling Seixas
  • Lucielli Savegnago
  • Kyle M. Schachtschneider
  • Diego Alves
  • Tiago CollaresEmail author


In the present study, the antitumoral properties of a series of 7-chloroquinoline-1,2,3-triazoyl-carboxamides (QTCA) were investigated by analyzing their cytotoxic activities against human bladder cells (5637; grade II carcinoma). In addition, their effects on cell viability, cell cycle arrest mechanisms, apoptosis induction, in silico molecular docking, and detection of pro-apoptotic and anti-apoptotic proteins were evaluated. The cytotoxicity assay identified major dose- and time-dependent cytotoxic effects in 5637 cells after they were exposed to treatment with QTCA, only minimal effects were observed on normal cells. A live/dead assay confirmed that significant cell death, arrest in the G0/G1 phase and apoptosis were associated with treatment by 1-(7-Chloroquinolin-4-yl)-5-methyl-N-phenyl-1H-1,2,3-triazole-4-carboxamide (QTCA-1) and 1-(7-Chloroquinolin-4-yl)-N-(4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carboxamide (QTCA-4). The in silico results indicated that these compounds acted through different mechanisms for the induction of cell cycle arrest and apoptosis. Western blotting confirmed the binding of the QTCAs to pro- and anti-apoptotic proteins. In conclusion, QTCA-1 and QTCA-4 are promising candidates for inducing cytotoxicity, cell cycle arrest, and apoptosis in human bladder cancer cells.


Anticancer Bladder cancer cytotoxicity Quinoline derivatives Apoptosis Cell cycle arrest 


Author contributions

Material preparation, data collection and analysis were performed by Mariana S. Sonego, Natália V. Segatto, Lucas Damé, Mariana Fronza, Carolina B. Gomes, Thais Larré Oliveira. Study conception and design were supervised by Fabiana Kömmling Seixas, Lucielli Savegnago, Kyle M. Schachtschneider, Diego Alves and Tiago Collares. The first draft of the manuscript was written by Mariana S. Sonego and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil (CAPES)–Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies involving the use of human participants or animals.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. 67:7–30. Google Scholar
  2. 2.
  3. 3.
    Yeung C, Dinh T, Lee J (2014) The health economics of bladder Cancer: an updated review of the published literature. Pharmacoeconomics 32:1093–1104. CrossRefPubMedGoogle Scholar
  4. 4.
    Eifler JB, Scarpato KR, Clark PE (2015) Management of noninvasive bladder cancers. Curr Opin Oncol 27:185–190. CrossRefPubMedGoogle Scholar
  5. 5.
    Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y (2017) Bladder cancer. Nat Rev Dis Prim:31–19.
  6. 6.
    Su H, Jiang H, Tao T, Kang X, Zhang X, Kang D, Li S, Li C, Wang H, Yang Z, Zhang J, Li C (2019) Hope and challenge: precision medicine in bladder cancer. Cancer Med 8:1806–1816. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tomaszewski JJ, Smaldone MC (2010) Emerging intravesical therapies for management of nonmuscle invasive bladder cancer. Open Access J Urol 2:67–84PubMedPubMedCentralGoogle Scholar
  8. 8.
    Logan C, Brown M, Hayne D (2012) Intravesical therapies for bladder cancer – indications and limitations. BJU Int 110:12–21. CrossRefPubMedGoogle Scholar
  9. 9.
    Grossman HB, O’donnell MA, Cookson MS, Greenberg RE, Keane TE (2008) Bacillus calmette-guerin failures and beyond: contemporary management of non-muscle-invasive bladder cancer. Rev Urol 10(4):281–289PubMedPubMedCentralGoogle Scholar
  10. 10.
    Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19(2):448. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lednicer D (2007) The organic chemistry of drug synthesis. Wiley 7. CrossRefGoogle Scholar
  12. 12.
    Kumar S, Bawa S, Gupta H (2009) Biological activities of Quinoline derivatives. Mini-Reviews Med Chem 9:1648–1654. CrossRefGoogle Scholar
  13. 13.
    Wilhelm EA, Machado NC, Pedroso AB, Goldani BS, Seus N, Moura S, Savegnago L, Jacob RG, Alves D (2014) Organocatalytic synthesis and evaluation of 7-chloroquinoline-1,2,3-triazoyl carboxamides as potential antinociceptive, anti-inflammatory and anticonvulsant agent. RSC Adv 4:41437–41445. CrossRefGoogle Scholar
  14. 14.
    Manera C, Cascio MG, Benetti V, Allarà M, Tuccinardi T, Martinelli A, Saccomanni G, Vivoli E, Ghelardini C, Di Marzo V, Ferrarini PL (2007) New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists. Bioorg Med Chem Lett 17:6505–6510. CrossRefPubMedGoogle Scholar
  15. 15.
    Dorey G, Lockhart B, Lestage P, Casara P (2000) New quinolinic derivatives as centrally active antioxidants. Bioorg Med Chem Lett 10:935–939. CrossRefPubMedGoogle Scholar
  16. 16.
    Saraiva MT, Krüger R, Baldinotti RSM, Lenardão EJ, Luchese C, Savegnago L, Wilhelm EA, Alves D (2016) 7-chloroquinoline-1,2,3-triazoyl carboxylates: Organocatalytic synthesis and antioxidant properties. J Braz Chem Soc 27:41–53. CrossRefGoogle Scholar
  17. 17.
    Naik HRP, Naik HSB, Naik TRR, Naika HR, Gouthamchandra K, Mahmood R, Ahamed BMK (2009) Synthesis of novel benzo[h]quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur J Med Chem 44:981–989. CrossRefPubMedGoogle Scholar
  18. 18.
    Nayyar A, Malde A, Coutinho E, Jain R (2006) Synthesis, anti-tuberculosis activity, and 3D-QSAR study of ring-substituted-2/4-quinolinecarbaldehyde derivatives. Bioorg Med Chem 14:7302–7310. CrossRefPubMedGoogle Scholar
  19. 19.
    Bawa S, Kumar S, Drabu S, Kumar R (2010) Structural modifications of quinoline-based antimalarial agents: recent developments. J Pharm Bioallie Sci 2:64. CrossRefGoogle Scholar
  20. 20.
    Clemence F, Le Martret O, Delevallee F, Benzoni J, Jouanen A, Jouquey S, Mouren M, Deraedt R (1988) 4-hydroxy-3-quinolinecarboxamides with Antiarthritic and analgesic activities. J Med Chem 31:1453–1462. CrossRefPubMedGoogle Scholar
  21. 21.
    Wallace OB, Lauwers KS, Jones SA, Dodge JA (2003) Tetrahydroquinoline-based selective estrogen receptor modulators (SERMs). Bioorg Med Chem Lett 13:1907–1910. CrossRefPubMedGoogle Scholar
  22. 22.
    Begnini KR, Duarte WR, da Silva LP, Buss JH, Goldani BS, Fronza M, Segatto NV, Alves D, Savegnago L, Seixas FK, Collares T (2017) Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells. Biomed Pharmacother 91:510–516. CrossRefPubMedGoogle Scholar
  23. 23.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AI, Sim GA (1966) Plant antitumor agents. I. the isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminate. J Am Chem Soc 88:3888–3890CrossRefGoogle Scholar
  24. 24.
    Ulukan H, Swaan PW (2002) Camptothecins, a review of their chemotherapeutical potential. Drugs 62:2039–2057. CrossRefPubMedGoogle Scholar
  25. 25.
    Melo JOF, Donnici CL, Augusti R, Ferreira VF, De Souza MCBV, Ferreira MLG, Cunha AC (2006) Heterociclos 1,2,3-triazólicos: Histórico, métodos de preparação, aplicações e atividades farmacológicas. Quim Nova 29:569–579. CrossRefGoogle Scholar
  26. 26.
    Thomas KD, Adhikari AV, Shetty NS (2010) Design, synthesis and antimicrobial activities of some new quinoline derivatives carrying 1,2,3-triazole moiety. Eur J Med Chem 45:3803–3810. CrossRefPubMedGoogle Scholar
  27. 27.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ferrari M, Fornasiero MC, Isetta AM (1990) MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 131:165–172. CrossRefPubMedGoogle Scholar
  29. 29.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Aust J Chem 4(1):17. CrossRefGoogle Scholar
  30. 30.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem United States 25(13):1605–1612. CrossRefGoogle Scholar
  32. 32.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Böhm HJ, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, Obst-Sander U, Stahl M (2004) Fluorine in medicinal chemistry. Chem Bio Chem 5:637–643. CrossRefPubMedGoogle Scholar
  34. 34.
    O’Hagan D (2010) Fluorine in health care: Organofluorine containing blockbuster drugs. J Fluor Chem 131:1071–1081. CrossRefGoogle Scholar
  35. 35.
    Afzal O, Kumar S, Haider R, Ali R, Kumar R, Jaggi M, Bawa S (2014) A review on anticancer potential of bioactive heterocycle quinolone. Eur J Med Chem:1–40. CrossRefGoogle Scholar
  36. 36.
    Munchen TS, Sonego MS, De Souza D, Dornelles L, Seixas FK, Collares T, Piccoli BC, D’Avila da Silva F, da Rocha JBT, Quoos N, Rodrigues OED (2018) New 3′ -Triazolyl-5′-aryl-chalcogenothymidine: synthesis and anti-oxidant and Antiproliferative bladder carcinoma (5637) activity. Chemistry Select 3:3479–3486. CrossRefGoogle Scholar
  37. 37.
    Wagner MS, Shultze E, Oliveira TL, De Leon PM, Campos VF, Oliveira I, Souza D, Rodrigues OED, Collares T, Seixas FK (2018) Revitalizing the AZT through of the selenium:na approach in human triple negative breast cancer cell line. Front Oncol (8):525.
  38. 38.
    Sena-Lopes A, Bezerra FSB, das Neves RN, De Pinho RB, De Oliveira Silva MT, Savegnago L, Collares T, Seixas F, Begnini K, JAP H, Ely MR, Rufatto LC, Moura S, Barcellos T, Padilha F, Dellagostin O, Borsuk S (2018) Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis. PLoS One 13(2):1–16. CrossRefGoogle Scholar
  39. 39.
    Ooi KK, Yeo CI, Mahandaran T et al (2017) G2/M cell cycle arrest on HT-29 cancer cells and toxicity assessment of triphenylphosphanegold(I) carbonimidothioates, Ph3PAu[SC(OR)=NPh], R=me, et, and iPr, during zebrafish development. J Inorg Biochem 166:173–181. CrossRefPubMedGoogle Scholar
  40. 40.
    Sri Ramya PV, Guntuku L, Angapelly S, Karri S, Digwal CS, Babu BN, Naidu VGM, Kamal A (2018) Curcumin inspired 2-chloro/phenoxy quinoline analogues: synthesis and biological evaluation as potential anticancer agents. Bioorg Med Chem Lett 28(5):892–898. CrossRefPubMedGoogle Scholar
  41. 41.
    Rubin E & Farber JL (1999) Neoplasia. In Rubin, E.; Farber, J.L. Pathology. 3 ed. Philadelphia: Lippincott Raven 155–21Google Scholar
  42. 42.
    Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–816. CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241. CrossRefPubMedGoogle Scholar
  44. 44.
    Lauber K, Blumenthal SG, Waibel M, Wesselborg S (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14:277–287. CrossRefPubMedGoogle Scholar
  45. 45.
    Li SY, Chen YL, Wang C, Tzeng CC (2006) Synthesis and antiproliferative evaluation of certain pyrido[3,2-g]quinoline derivatives. Bioorg Med Chem 14:7370–7376. CrossRefPubMedGoogle Scholar
  46. 46.
    Carneiro MLB, Porfírio EP, Otake AH, Chammas R, Báo SN, Guillo LA (2010) Morphological alterations and G0/G1 cell cycle arrest induced by Curcumin in human SK-MEL-37 melanoma cells. Braz Arch Biol Technol 53(2):343–352 ISSN 1516-8913CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Li Z, Min Q, Palida A, Zhang Y, Tang R et al (2018) 8-Chrysoeriol, as a potential BCL-2 inhibitor triggers apoptosis of SW1990 pancreatic cancer cells. Bioorg Chem United States 77:478–484. CrossRefGoogle Scholar
  48. 48.
    Chandrashekhar R, Ram B, Bhavani NL, Bakshi V (2017) Molecular docking studies of Hydrazide-Hydrazone derivatives of gossypol against Bcl-2 family anti-apoptotic targets. Drug Des 6:155. CrossRefGoogle Scholar
  49. 49.
    Ding J, Mooers BHM, Zhang Z, Kale J, Falcone D, McNichol J et al (2014) After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J Biol Chem 289(17):11873–11896. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shangary S, Wang S (2009) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Neochoritis CG, Wang K, Estrada-Ortiz N, Herdtweck E, Kubica K, Twarda A, Zak KM, Holak TA, Dömling A (2015) 2,3′-Bis(1′H-indole) heterocycles: new p53/MDM2/MDMX antagonists. Bioorg Med Chem Lett 25:5661–5666. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Atatreh N, Ghattas MA, Bardaweel SK, Rawashdeh SAL, Sorkhy MAL (2018) Identification of new inhibitors of Mdm2 – p53 interaction via pharmacophore and structure- based virtual screening. Drug Des Devel Ther 12:3741–3752. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Song X, Xiong Y, Qi X, Tang W, Dai J, Gu Q et al (2018) Molecular targets of active anticancer compounds derived from marine sources. Mar Drugs Switzerland 16(5):175. CrossRefGoogle Scholar
  54. 54.
    Estrada-Ortiz N, Neochoritis CG, Domling A (2016) How to design a successful p53-MDM2/X interaction inhibitor: a thorough overview based on crystal structures. Chem Med Chem Germany 11(8):757–772. CrossRefGoogle Scholar
  55. 55.
    Campbell KJ, Tait SWG (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Biol 8(5):1–11. CrossRefGoogle Scholar
  56. 56.
    Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406. CrossRefPubMedGoogle Scholar
  57. 57.
    Elkholi R, Renault TT, Serasinghe MN, Chipuk JE (2014) Putting the pieces together: how is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab 2:16. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mariana S. Sonego
    • 1
  • Natália V. Segatto
    • 1
  • Lucas Damé
    • 1
  • Mariana Fronza
    • 2
  • Carolina B. Gomes
    • 3
  • Thais Larré Oliveira
    • 1
  • Fabiana Kömmling Seixas
    • 1
  • Lucielli Savegnago
    • 2
  • Kyle M. Schachtschneider
    • 4
    • 5
    • 6
  • Diego Alves
    • 3
  • Tiago Collares
    • 1
    Email author
  1. 1.Laboratório de Biotecnologia do Câncer, Programa de Pós-Graduação em Biotecnologia (PPGB), Centro de Desenvolvimento Tecnológico (CDTec)Universidade Federal de PelotasCapão do LeãoBrazil
  2. 2.Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Desenvolvimento Tecnológico (CDTec)Universidade Federal de PelotasPelotasBrazil
  3. 3.Laboratório de Síntese Orgânica Limpa (LASOL), CCQFAUniversidade Federal de PelotasCapão do LeãoBrazil
  4. 4.Department of RadiologyUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Department of Biochemistry & Molecular GeneticsUniversity of Illinois at ChicagoChicagoUSA
  6. 6.National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations