Advertisement

Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway

  • Gaochao Hou
  • Xiang Yuan
  • Yi Li
  • Gaoyu Hou
  • Xianli LiuEmail author
PRECLINICAL STUDIES
  • 7 Downloads

Summary

Objectives Cardamonin (CD), an active chalconoid, has been extensively studied in a wide variety of human tumors. However, the effects and underlying mechanism of cardamonin on 5-fluorouracil (5-FU)-resistant gastric cancer (GC) remain largely unclear. This study aimed to investigate the antitumor effects of cardamonin on 5-FU-resistant GC cells and explore the molecular mechanisms underlying its therapeutic potential. Methods The antitumor activities of cardamonin, 5-FU and their combination against BGC-823 and BGC-823/5-FU cells were determined using cytotoxicity assay, flow cytometry-based cell cycle analysis and Annexin V apoptosis assay. The effect of cardamonin on P-glycoprotein activity was assessed by Rh123 uptake assay. Real-time PCR, Western blotting and Co-immunoprecipitation analysis were carried out to assess the inhibition of Wnt/β-catenin signaling pathway. A xenograft mouse model was established using BALB/c nude mice to examine the combinatorial effects of cardamonin and 5-FU on tumor growth. Results Our data provided the first demonstration that cardamonin significantly enhanced the chemosensitivity of 5-FU in GC cells via suppression of Wnt/β-catenin signaling pathway. Additionally, the combination of cardamonin and 5-FU might result in the apoptosis and cell cycle arrest of BGC-823/5-FU cells, accompanied by the downregulated expression levels of P-glycoprotein, β-catenin and TCF4. More importantly, our results demonstrated that cardamonin specifically disrupted the formation of β-catenin/TCF4 complex, leading to TCF4-mediated transcriptional activation in 5-FU-resistant GC cells. Besides, through a xenograft mouse model, co-administration of cardamonin and 5-FU significantly retarded tumor growth in vivo, thus, confirming our in vitro findings. Conclusions Overall, this study revealed that cotreatment of cardamonin and 5-FU could strongly potentiate the antitumor activity of 5-FU, and put forth cardamonin as a rational therapeutic strategy for drug-resistant GC treatment.

Keywords

Cardamonin Multidrug resistance Wnt/β-catenin Gastric cancer 

Abbreviations

CD

Cardamonin

5-FU

5-fluorouracil

P-gp

P-glycoprotein

MDR

Multiple drug resistance

GC

Gastric cancer

Rh-123

Rhodamine-123

RT-PCR

Real-time polymerase chain reaction

Notes

Compliance with ethical standards

Conflict of interest

All authors declare to have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The manuscript does not contain clinical studies or patient data.

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:1–31.  https://doi.org/10.3322/caac.21492 CrossRefGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386.  https://doi.org/10.1002/ijc.29210 CrossRefGoogle Scholar
  3. 3.
    Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F (2014) Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomark Prev 23(5):700–713.  https://doi.org/10.1158/1055-9965.EPI-13-1057 CrossRefGoogle Scholar
  4. 4.
    Shi W-J, Gao J-B (2016) Molecular mechanisms of chemoresistance in gastric cancer. World J Gastrointest Oncol 8(9):673–681.  https://doi.org/10.4251/wjgo.v8.i9.673 CrossRefGoogle Scholar
  5. 5.
    Xu H-W, Xu L, Hao J-H, Qin CY, Liu H (2010) Expression of P-glycoprotein and multidrug resistance-associated protein is associated with multidrug resistance in gastric cancer. J Int Med Res 38:34–42.  https://doi.org/10.1177/147323001003800104 CrossRefGoogle Scholar
  6. 6.
    Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338.  https://doi.org/10.1038/nrc1074 CrossRefGoogle Scholar
  7. 7.
    Holohan C, van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726.  https://doi.org/10.1038/nrc3599 CrossRefGoogle Scholar
  8. 8.
    Ushigome F, Takanaga H, Matsuo H, Yanai S, Tsukimori K, Nakano H, Uchiumi T, Nakamura T, Kuwano M, Ohtani H, Sawada Y (2000) Human placental transport of vinblastine, vincristine, digoxin and progesterone: contribution of P-glycoprotein. Eur J Pharmacol 408(1):1–10CrossRefGoogle Scholar
  9. 9.
    Marbeuf-Gueye C, Salerno M, Quidu P, Garnier-Suillerot A (2000) Inhibition of the P-glycoprotein- and multidrug resistance protein-mediated efflux of anthracyclines and calceinacetoxymethyl ester by PAK-104P. Eur J Pharmacol 391(3):207–216.  https://doi.org/10.1016/S0014-2999(00)00047-9 CrossRefGoogle Scholar
  10. 10.
    Labialle S, Gayet L, Marthinet E, Rigal D, Baggetto LG (2002) Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem Pharmacol 64(5–6):943–948CrossRefGoogle Scholar
  11. 11.
    Chen KG, Sikic BI (2012) Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin Cancer Res 18(7):1863–1869.  https://doi.org/10.1158/1078-0432.CCR-11-1590 CrossRefGoogle Scholar
  12. 12.
    Tang B, Zhang Y, Liang R et al (2013) RNAi-mediated EZH2 depletion decreases MDR1 expression and sensitizes multidrug-resistant hepatocellular carcinoma cells to chemotherapy. Oncol Rep 29(3):1037–1042.  https://doi.org/10.3892/or.2013.2222 CrossRefGoogle Scholar
  13. 13.
    Peng C, Zhang X, Yu H, Wu D, Zheng J (2011) Wnt5a as a predictor in poor clinical outcome of patients and a mediator in chemoresistance of ovarian cancer. Int J Gynecol Cancer 21(2):280–288.  https://doi.org/10.1097/IGC.0b013e31820aaadb CrossRefGoogle Scholar
  14. 14.
    Vangipuram SD, Buck SA, Lyman WD (2012) Wnt pathway activity confers chemoresistance to cancer stem-like cells in a neuroblastoma cell line. Tumour Biol 33(6):2173–2183.  https://doi.org/10.1007/s13277-012-0478-0 CrossRefGoogle Scholar
  15. 15.
    Noda T, Nagano H, Takemasa I, Yoshioka S, Murakami M, Wada H, Kobayashi S, Marubashi S, Takeda Y, Dono K, Umeshita K, Matsuura N, Matsubara K, Doki Y, Mori M, Monden M (2009) Activation of Wnt/beta-catenin signalling pathway induces chemoresistance to interferon-alpha/5-fluorouracil combination therapy for hepatocellular carcinoma. Br J Cancer 100(10):1647–1658.  https://doi.org/10.1038/sj.bjc.6605064 CrossRefGoogle Scholar
  16. 16.
    Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q, Zhang J (2012) Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun 425(2):468–472.  https://doi.org/10.1016/j.bbrc.2012.07.127 CrossRefGoogle Scholar
  17. 17.
    Ma Y, Ren Y, Han EQ, Li H, Chen D, Jacobs JJ, Gitelis S, O’Keefe RJ, Konttinen YT, Yin G, Li TF (2013) Inhibition of the Wnt-β-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem Biophys Res Commun 431(2):274–279.  https://doi.org/10.1016/j.bbrc.2012.12.118 CrossRefGoogle Scholar
  18. 18.
    Shen DY, Zhang W, Zeng X, Liu CQ (2013) Inhibition of Wnt/beta-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci 104(10):1303–1308.  https://doi.org/10.1111/cas.12223 CrossRefGoogle Scholar
  19. 19.
    Wei Y, Shen N, Wang Z, Yang G, Yi B, Yang N, Qiu Y, Lu J (2013) Sorafenib sensitizes hepatocellular carcinoma cell to cisplatin via suppression of Wnt/β-catenin signaling. Mol Cell Biochem 381(1–2):139–144.  https://doi.org/10.1007/s11010-013-1695-6 CrossRefGoogle Scholar
  20. 20.
    Ouhtit A, Gaur RL, Abdraboh M, Ireland SK, Rao PN, Raj SG, al-Riyami H, Shanmuganathan S, Gupta I, Murthy SN, Hollenbach A, Raj MHG (2013) Simultaneous inhibition of cell-cycle, proliferation, survival, metastatic pathways and induction of apoptosis in breast cancer cells by a phytochemical super-cocktail: genes that underpin its mode of action. J Cancer 4(9):703–715.  https://doi.org/10.7150/jca.7235 CrossRefGoogle Scholar
  21. 21.
    Gonçalves LM, Valente IM, Rodrigues JA (2014) An overview on cardamonin. J Med Food 17(6):633–640.  https://doi.org/10.1089/jmf.2013.0061 CrossRefGoogle Scholar
  22. 22.
    Tang H, Zeng L, Wang J et al (2017) Reversal of 5-fluorouracil resistance by EGCG is mediate by inactivation of TFAP2A/VEGF signaling pathway and down-regulation of MDR-1 and P-gp expression in gastric cancer. Oncotarget 8(47):82842–82853.  https://doi.org/10.18632/oncotarget.20666 CrossRefGoogle Scholar
  23. 23.
    Heo DS, Park JG, Hata K, Day R, Herberman RB, Whiteside TL (1990) Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res 50(12):3681–3690Google Scholar
  24. 24.
    Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Mizuta Y, Murase K, Yoshida H, Ross DD, Kohno S (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108(1):146–151.  https://doi.org/10.1002/ijc.11528 CrossRefGoogle Scholar
  25. 25.
    Palmeira A, Sousa E, Vasconcelos MH et al (2012) Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19(13):1946–2025CrossRefGoogle Scholar
  26. 26.
    Shaik N, Pan G, Elmquist WF (2008) Interactions of pluronic block copolymers on P-gp efflux activity: experience with HIV-1 protease inhibitors. J Pharm Sci 97(12):5421–5433.  https://doi.org/10.1002/jps.21372 CrossRefGoogle Scholar
  27. 27.
    Wang G, Chen H, Huang M, Wang N, Zhang J, Zhang Y, Bai G, Fong WF, Yang M, Yao X (2006) Methyl protodioscin induces G2/M cell cycle arrest and apoptosis in HepG2 liver cancer cells. Cancer Lett 241(1):102–109.  https://doi.org/10.1016/j.canlet.2005.10.050 CrossRefGoogle Scholar
  28. 28.
    Gu S-X, Li X, Hamilton JL, Chee A, Kc R, Chen D, An HS, Kim JS, Oh CD, Ma YZ, van Wijnen AJ, Im HJ (2015) MicroRNA-146a reduces IL-1 dependent inflammatory responses in the intervertebral disc. Gene 555(2):80–87.  https://doi.org/10.1016/j.gene.2014.10.024 CrossRefGoogle Scholar
  29. 29.
    Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM, Simon MC (2010) Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res 70(24):10351–10361.  https://doi.org/10.1158/0008-5472.CAN-10-0740 CrossRefGoogle Scholar
  30. 30.
    Li Q, Wang X, Shen A et al (2015) Hedyotis diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATP-binding casette subfamily G member 2. Exp Ther Med 10(5):1845–1850.  https://doi.org/10.3892/etm.2015.2762 CrossRefGoogle Scholar
  31. 31.
    Yamada T, Takaoka AS, Naishiro Y et al (2000) Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res 60(17):4761–4766Google Scholar
  32. 32.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58.  https://doi.org/10.1038/nrc706 CrossRefGoogle Scholar
  33. 33.
    Xia L-l, Tang Y-b, Song F-f et al (2016) DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically. Oncotarget 7:68623–68637.  https://doi.org/10.18632/oncotarget.11864 Google Scholar
  34. 34.
    Zhang D, Fan D (2007) Multidrug resistance in gastric cancer: recent research advances and ongoing therapeutic challenges. Expert Rev Anticancer Ther 7(10):1369–1378.  https://doi.org/10.1586/14737140.7.10.1369 CrossRefGoogle Scholar
  35. 35.
    Yan L-H, Wei W-Y, Cao W-L, Zhang XS, Xie YB, Xiao Q (2015) Overexpression of CDX2 in gastric cancer cells promotes the development of multidrug resistance. Am J Cancer Res 5(1):321–332Google Scholar
  36. 36.
    Liu D, Zhou H, Wu J, Liu W, Li Y, Shi G, Yue X, Sun X, Zhao Y, Hu X, Wang T, Zhang X (2015) Infection by Cx43 adenovirus increased chemotherapy sensitivity in human gastric cancer BGC-823 cells: not involving in induction of cell apoptosis. Gene 574(2):217–224.  https://doi.org/10.1016/j.gene.2015.08.052 CrossRefGoogle Scholar
  37. 37.
    Lian W, Zhang L, Yang L, Chen W (2017) AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis 22(7):933–941.  https://doi.org/10.1007/s10495-017-1379-x CrossRefGoogle Scholar
  38. 38.
    Yang L, Li N, Wang H et al (2012) Altered microRNA expression in cisplatin-resistant ovarian cancer cells and upregulation of miR-130a associated with MDR1/P-glycoprotein-mediated drug resistance. Oncol Rep 28(2):592–600.  https://doi.org/10.3892/or.2012.1823 CrossRefGoogle Scholar
  39. 39.
    Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J, Guo D, Lu M, Liu F, Liu J, Ma C, Shi LL, Athiviraham A, He TC, Lee MJ (2016) Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 3(1):11–40.  https://doi.org/10.1016/j.gendis.2015.12.004 CrossRefGoogle Scholar
  40. 40.
    Corrêa S, Binato R, Du Rocher B et al (2012) Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer 12(42):303–309.  https://doi.org/10.1186/1471-2407-12-303 CrossRefGoogle Scholar
  41. 41.
    Shukla G, Khera HK, Srivastava AK, Khare P, Patidar R, Saxena R (2017) Therapeutic potential, challenges and future perspective of cancer stem cells in therapeutic potential, challenges and future perspective of cancer stem cells in translational oncology: a critical review. Curr Stem Cell Res Ther 12(3):207–224.  https://doi.org/10.2174/1574888X11666161028143224 CrossRefGoogle Scholar
  42. 42.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111.  https://doi.org/10.1038/35102167 CrossRefGoogle Scholar
  43. 43.
    Tirino V, Desiderio V, Paino F, de Rosa A, Papaccio F, la Noce M, Laino L, de Francesco F, Papaccio G (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27(1):13–24.  https://doi.org/10.1096/fj.12-218222 CrossRefGoogle Scholar
  44. 44.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828Google Scholar
  45. 45.
    Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E (2007) Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 67(18):8671–8681.  https://doi.org/10.1158/0008-5472.CAN-07-1486 CrossRefGoogle Scholar
  46. 46.
    Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol 31:28–35.  https://doi.org/10.1016/j.semcancer.2014.07.001 CrossRefGoogle Scholar
  47. 47.
    Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, Chung CH, Lu B (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011:1–13.  https://doi.org/10.1155/2011/941876 CrossRefGoogle Scholar
  48. 48.
    Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, Wang H, Tang B, Zhang Q, Yu X, Wang L, Song B, Li L (2014) Roles of Wnt/β-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis 5:1–9.  https://doi.org/10.1038/cddis.2013.515 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyangChina
  2. 2.Henan Key Laboratory of Cancer Epigenetics, Cancer InstituteThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyangChina
  3. 3.Department of RadiologyZhengzhou Children’s Hospital Affiliated to Zhengzhou UniversityZhengzhouChina

Personalised recommendations