Investigational New Drugs

, Volume 37, Issue 5, pp 1014–1028 | Cite as

Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth of melanoma cells in vitro and in vivo

  • Svetlana Paskas
  • Emanuela Mazzon
  • Maria Sofia Basile
  • Eugenio Cavalli
  • Yousef Al-Abed
  • Mingzhu He
  • Sara Rakocevic
  • Ferdinando NicolettiEmail author
  • Sanja Mijatovic
  • Danijela Maksimovic-Ivanic


We generated a nitric oxide (NO)-releasing derivative of the anti-HIV protease inhibitor lopinavir by linking the NO moiety to the parental drug. We investigated the effects of lopinavir and its derivative lopinavir-NO on melanoma cell lines in vitro and in vivo. Lopinavir-NO exhibited a twofold stronger anticancer action than lopinavir in vitro. These results were successfully translated into syngeneic models of melanoma in vivo, where a significant reduction in tumour volume was observed only in animals treated with lopinavir-NO. Both lopinavir and lopinavir-NO inhibited cell proliferation and induced the trans-differentiation of melanoma cells to Schwann-like cells. In melanoma cancer cell lines, both lopinavir and lopinavir-NO induced morphological changes, minor apoptosis and reactive oxygen species (ROS) production. However, caspase activation and autophagy were detected only in B16 cells, indicating a cell line-specific treatment response. Lopinavir-NO released NO intracellularly, and NO neutralization restored cell viability. Treatment with lopinavir-NO induced only a transient activation of Akt and inhibition of P70S6 kinase. The results of this study identify lopinavir-NO as a promising candidate for further clinical trials in melanoma and possibly other solid tumours.


HIV protease inhibitors Lopinavir Nitric oxide Trans-differentiation Melanoma Schwann-like cells 



The work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number 173013] and by the current research funds (2018) of IRCCS Centro Neurolesi “Bonino–Pulejo”, Messina, Italy.

Compliance with ethical standards

Conflicts of interest

Svetlana Paskas declares that she has no conflicts of interest. Emanuela Mazzon declares that she has no conflicts of interest. Maria Sofia Basile declares that she has no conflicts of interest. Eugenio Cavalli declares that he has no conflicts of interest. Yousef Al-Abed is a cofounder and shareholder of OncoNOx, which has outlicensed lopinavir-NO to Inflamalps.

Mingzhu He declares that she has no conflicts of interest. Sara Rakocevic declares that she has no conflicts of interest. Ferdinando Nicoletti is a cofounder and shareholder of OncoNOx, which has outlicensed lopinavir-NO to Inflamalps. Sanja Mijatovic declares that she has no conflicts of interest. Danijela Maksimovic-Ivanic declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal studies were performed in accordance with local guidelines and approved by the local Institutional Animal Care and Use Committee (IACUC), approval nr. 01–08/17.

Informed consent

For this type of study, formal consent is not required.

Supplementary material

10637_2019_733_MOESM1_ESM.jpg (2.6 mb)
Supplement 1 Lopinavir and lopinavir-NO induce a change in the morphology of melanoma cells. Mouse solid melanoma (B16) and mouse metastatic melanoma (B16F10) cells were treated with IC50 concentrations of lopinavir and lopinavir-NO for 48 h and observed under a light microscope (Nikon TS 100, Nikon, Tokyo, Japan); 100X magnification. (JPG 2640 kb)
10637_2019_733_MOESM2_ESM.jpg (1.6 mb)
Supplement 2 Lopinavir and lopinavir-NO induce a minor change in the nuclear morphology in melanoma cells. Mouse solid melanoma (B16) and mouse metastatic melanoma (B16F10) cells were treated with IC50 concentrations of lopinavir and lopinavir-NO for 48 h, stained with propidium iodide and observed under a fluorescence microscope (Axio Observer Z.1, Zeiss, Jena, Germany); 400X magnification. (JPG 1651 kb)
10637_2019_733_MOESM3_ESM.jpg (427 kb)
Supplement 3 Lopinavir-NO releases NO intracellularly. Melanoma cells were incubated with 8 μM lopinavir-NO for the indicated durations. Intracellular NO levels were determined by DAF-FM diacetate staining. The data are presented as the means ± SEMs of three independent experiments. Bars not sharing a common letter indicate significant differences, p < 0.05. (JPG 426 kb)
10637_2019_733_MOESM4_ESM.jpg (349 kb)
Supplement 4 Lopinavir and lopinavir-NO induce oxidative stress, which does not, per se, reduce the viability of melanoma cells. B16 cells were treated with IC50 concentrations of lopinavir and lopinavir-NO (HIV-PIs) in combination with the antioxidant N-acetylcysteine (2.5 μM) for 48 h and stained with crystal violet. The data are presented as the means ± SEMs of three independent experiments. Bars not sharing a common letter indicate significant differences, p < 0.05. (JPG 348 kb)


  1. 1.
    Flexner C (1998) HIV-protease inhibitors. N Engl J Med 338:1281–1292CrossRefGoogle Scholar
  2. 2.
    International Collaboration on HIV and Cancer (2000) Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst 92:1823–1830CrossRefGoogle Scholar
  3. 3.
    Sgadari C, Barillari G, Toschi E, Carlei D, Bacigalupo I, Baccarini S, Palladino C, Leone P, Bugarini R, Malavasi L, Cafaro A, Falchi M, Valdembri D, Rezza G, Bussolino F, Monini P, Ensoli B (2002) HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med 8:225–232CrossRefGoogle Scholar
  4. 4.
    Ikezoe T, Hisatake Y, Takeuchi T, Ohtsuki Y, Yang Y, Said JW, Taguchi H, Koeffler HP (2004) HIV-1 protease inhibitor, ritonavir: a potent inhibitor of CYP3A4, enhanced the anticancer effects of docetaxel in androgen-independent prostate cancer cells in vitro and in vivo. Cancer Res 64:7426–7431CrossRefGoogle Scholar
  5. 5.
    Lee CG, Gottesman MM, Cardarelli CO, Ramachandra M, Jeang KT, Ambudkar SV, Pastan I, Dey S (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37:3594–3601CrossRefGoogle Scholar
  6. 6.
    Andre P, Groettrup M, Klenerman P, de Giuli R, Booth BL Jr, Cerundolo V, Bonneville M, Jotereau F, Zinkernagel RM, Lotteau V (1998) An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci U S A 95:13120–13124CrossRefGoogle Scholar
  7. 7.
    Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH (2002) The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res 62:5230–5235Google Scholar
  8. 8.
    Barillari G, Iovane A, Bacigalupo I, Labbaye C, Chiozzini C, Sernicola L, Quaranta MT, Falchi M, Sgadari C, Ensoli B (2014) The HIV protease inhibitor indinavir down-regulates the expression of the pro-angiogenic MT1-MMP by human endothelial cells. Angiogenesis 17:831–838CrossRefGoogle Scholar
  9. 9.
    Sgadari C, Monini P, Barillari G, Ensoli B (2003) Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth. Lancet Oncol 4:537–547CrossRefGoogle Scholar
  10. 10.
    Gupta AK, Cerniglia GJ, Mick R, McKenna WG, Muschel RJ (2005) HIV protease inhibitors block Akt signalling and radiosensitize tumor cells both in vitro and in vivo. Cancer Res 65:8256–8265CrossRefGoogle Scholar
  11. 11.
    Yang Y, Ikezoe T, Nishioka C, Bandobashi K, Takeuchi T, Adachi Y, Kobayashi M, Takeuchi S, Koeffler HP, Taguchi H (2006) NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines. Br J Cancer 95:1653–1662CrossRefGoogle Scholar
  12. 12.
    Gupta V, Samuleson CG, Su S, Chen TC (2007) Nelfinavir potentiation of imatinib cytotoxicity in meningioma cells via survivin inhibition. Neurosurg Focus 23:E9CrossRefGoogle Scholar
  13. 13.
    Bernstein WB, Dennis PA (2008) Repositioning HIV protease inhibitors as cancer therapeutics. Curr Opin HIV AIDS 3:666–675CrossRefGoogle Scholar
  14. 14.
    Powderly WG (2002) Long-term exposure to lifelong therapies. J Acquir Immune Defic Syndr 29(Suppl 1):S28–S40CrossRefGoogle Scholar
  15. 15.
    Beloqui A, Solinis MA, Gascon AR, del Pozo-Rodriguez A, des Rieux A, Preat V (2013) Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J Control Release 166:115–123CrossRefGoogle Scholar
  16. 16.
    Singh R, Kesharwani P, Mehra NK, Singh S, Banerjee S, Jain NK (2015) Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm 41:1888–1901CrossRefGoogle Scholar
  17. 17.
    Rothweiler F, Michaelis M, Brauer P, Otte J, Weber K, Fehse B, Doerr HW, Wiese M, Kreuter J, Al-Abed Y, Nicoletti F, Cinatl J Jr (2010) Anticancer effects of the nitric oxide-modified saquinavir derivative saquinavir-NO against multidrug-resistant cancer cells. Neoplasia 12:1023–1030CrossRefGoogle Scholar
  18. 18.
    Maksimovic-Ivanic D, Mijatovic S, Miljkovic D, Harhaji-Trajkovic L, Timotijevic G, Mojic M, Dabideen D, Cheng KF, McCubrey JA, Mangano K, Al-Abed Y, Libra M, Garotta G, Stosic-Grujicic S, Nicoletti F (2009) The antitumor properties of a nontoxic, nitric oxide-modified version of saquinavir are independent of Akt. Mol Cancer Ther 8:1169–1178CrossRefGoogle Scholar
  19. 19.
    Maksimovic-Ivanic D, Mojic M, Bulatovic M, Radojkovic M, Kuzmanovic M, Ristic S, Stosic-Grujicic S, Miljkovic D, Cavalli E, Libra M, Fagone P, McCubrey J, Nicoletti F, Mijatovic S (2015) The NO-modified HIV protease inhibitor as a valuable drug for hematological malignancies: role of p70S6K. Leuk Res 39:1088–1095CrossRefGoogle Scholar
  20. 20.
    Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F (2018) Gasotransmitters and the immune system: mode of action and novel therapeutic targets. Eur J Pharmacol 834:92–102CrossRefGoogle Scholar
  21. 21.
    Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2:149–156CrossRefGoogle Scholar
  22. 22.
    Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends Cell Biol 11:66–75CrossRefGoogle Scholar
  23. 23.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166CrossRefGoogle Scholar
  24. 24.
    Benz D, Cadet P, Mantione K, Zhu W, Stefano G (2002) Tonal nitric oxide and health—a free radical and a scavenger of free radicals. Med Sci Monit 8:RA1–RA4Google Scholar
  25. 25.
    Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004:227–237CrossRefGoogle Scholar
  26. 26.
    Hussain SP, Harris CC (2007) Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121:2373–2380CrossRefGoogle Scholar
  27. 27.
    Vahora H, Khan MA, Alalami U, Hussain A (2016) The potential role of nitric oxide in halting Cancer progression through chemoprevention. J Cancer Prev 21:1–12CrossRefGoogle Scholar
  28. 28.
    Perrotta C, Falcone S, Capobianco A, Camporeale A, Sciorati C, De Palma C, Pisconti A, Rovere-Querini P, Bellone M, Manfredi AA, Clementi E (2004) Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res 64:3767–3771CrossRefGoogle Scholar
  29. 29.
    Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A (2005) Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 65:516–525Google Scholar
  30. 30.
    Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B (2004) Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene 23:4993–5003CrossRefGoogle Scholar
  31. 31.
    Maksimovic-Ivanic D, Mijatovic S, Harhaji L, Miljkovic D, Dabideen D, Fan Cheng K, Mangano K, Malaponte G, Al-Abed Y, Libra M, Garotta G, Nicoletti F, Stosic-Grujicic S (2008) Anticancer properties of the novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide in vitro and in vivo. Mol Cancer Ther 7:510–520CrossRefGoogle Scholar
  32. 32.
    Song JM, Upadhyaya P, Kassie F (2018) Nitric oxide-donating aspirin (NO-Aspirin) suppresses lung tumorigenesis in vitro and in vivo and these effects are associated with modulation of the EGFR signalling pathway. Carcinogenesis 39:911–920CrossRefGoogle Scholar
  33. 33.
    Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GR, Safe S (2011) GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-microRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res 9:195–202CrossRefGoogle Scholar
  34. 34.
    Maksimovic-Ivanic D, Fagone P, McCubrey J, Bendtzen K, Mijatovic S, Nicoletti F (2017) HIV-protease inhibitors for the treatment of cancer: repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives? Int J Cancer 140:1713–1726CrossRefGoogle Scholar
  35. 35.
    Mojic M, Mijatovic S, Maksimovic-Ivanic D, Dinic S, Grdovic N, Miljkovic D, Stosic-Grujicic S, Tumino S, Fagone P, Mangano K, Zocca MB, Al-Abed Y, McCubrey JA, Nicoletti F (2012) Saquinavir-NO-targeted S6 protein mediates sensitivity of androgen-dependent prostate cancer cells to TRAIL. Cell Cycle 11:1174–1182CrossRefGoogle Scholar
  36. 36.
    Mojic M, Mijatovic S, Maksimovic-Ivanic D, Miljkovic D, Stosic-Grujicic S, Stankovic M, Mangano K, Travali S, Donia M, Fagone P, Zocca MB, Al-Abed Y, McCubrey JA, Nicoletti F (2012) Therapeutic potential of nitric oxide-modified drugs in colon cancer cells. Mol Pharmacol 82:700–710CrossRefGoogle Scholar
  37. 37.
    Mijatovic S, Bramanti A, Nicoletti F, Fagone P, Kaluderovic G, Maksimovic-Ivanic D (2018) Naturally occurring compounds in differentiation based therapy of cancer. Biotechnol Adv 36:1622–1632CrossRefGoogle Scholar
  38. 38.
    Kamaraju AK, Bertolotto C, Chebath J, Revel M (2002) Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signalling. J Biol Chem 277:15132–15141CrossRefGoogle Scholar
  39. 39.
    Slutsky SG, Kamaraju AK, Levy AM, Chebath J, Revel M (2003) Activation of myelin genes during transdifferentiation from melanoma to glial cell phenotype. J Biol Chem 278:8960–8968CrossRefGoogle Scholar
  40. 40.
    Reed JA, Finnerty B, Albino AP (1999) Divergent cellular differentiation pathways during the invasive stage of cutaneous malignant melanoma progression. Am J Pathol 155:549–555CrossRefGoogle Scholar
  41. 41.
    Homewood CA, Warhurst DC, Peters W, Baggaley VC (1972) Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235:50–52CrossRefGoogle Scholar
  42. 42.
    Kariya R, Taura M, Suzu S, Kai H, Katano H, Okada S (2014) HIV protease inhibitor Lopinavir induces apoptosis of primary effusion lymphoma cells via suppression of NF-kappaB pathway. Cancer Lett 342:52–59CrossRefGoogle Scholar
  43. 43.
    Johnson MD, O’Connell M, Pilcher W (2011) Lopinavir inhibits meningioma cell proliferation by Akt independent mechanism. J Neuro-Oncol 101:441–448CrossRefGoogle Scholar
  44. 44.
    Abt D, Besse A, Sedlarikova L, Kraus M, Bader J, Silzle T, Vodinska M, Slaby O, Schmid HP, Engeler DS, Driessen C, Besse L (2018) Improving the efficacy of proteasome inhibitors in the treatment of renal cell carcinoma by combination with the human immunodeficiency virus (HIV)-protease inhibitors lopinavir or nelfinavir. BJU Int 121:600–609CrossRefGoogle Scholar
  45. 45.
    Liu R, Zhang L, Yang J, Zhang X, Mikkelsen R, Song S, Zhou H (2015) HIV protease inhibitors sensitize human head and neck squamous carcinoma cells to radiation by activating endoplasmic reticulum stress. PLoS One 10:e0125928CrossRefGoogle Scholar
  46. 46.
    Sato A, Okubo K, Asano T, Isono M, Asano T (2017) Lopinavir synergizes with ritonavir to induce bladder cancer apoptosis by causing histone acetylation and endoplasmic reticulum stress. Eur Urol Suppl 16:e1454–e1455CrossRefGoogle Scholar
  47. 47.
    Bierman WF, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ (2010) Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother 65:1672–1680CrossRefGoogle Scholar
  48. 48.
    Danciu C, Falamas A, Dehelean C, Soica C, Radeke H, Barbu-Tudoran L, Bojin F, Pinzaru SC, Munteanu MF (2013) A characterization of four B16 murine melanoma cell sublines molecular fingerprint and proliferation behavior. Cancer Cell Int 13:75CrossRefGoogle Scholar
  49. 49.
    Donato AL, Huang Q, Liu X, Li F, Zimmerman MA, Li CY (2014) Caspase 3 promotes surviving melanoma tumor cell growth after cytotoxic therapy. J Invest Dermatol 134:1686–1692CrossRefGoogle Scholar
  50. 50.
    Gratton R, Tricarico PM, Guimaraes RL, Celsi F, Crovella S (2018) Lopinavir/ritonavir treatment induces oxidative stress and caspase-independent apoptosis in human glioblastoma U-87 MG cell line. Curr HIV Res 16:106–112CrossRefGoogle Scholar
  51. 51.
    Kushchayeva Y, Jensen K, Recupero A, Costello J, Patel A, Klubo-Gwiezdzinska J, Boyle L, Burman K, Vasko V (2014) The HIV protease inhibitor nelfinavir down-regulates RET signalling and induces apoptosis in medullary thyroid cancer cells. J Clin Endocrinol Metab 99:E734–E745CrossRefGoogle Scholar
  52. 52.
    Higashiyama M, Okami J, Maeda J, Tokunaga T, Fujiwara A, Kodama K, Imamura F, Kobayashi H (2012) Differences in chemosensitivity between primary and paired metastatic lung cancer tissues: in vitro analysis based on the collagen gel droplet embedded culture drug test (CD-DST). J Thorac Dis 4:40–47Google Scholar
  53. 53.
    Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23:488–496Google Scholar
  54. 54.
    Gobeil S, Zhu X, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22:2932–2940CrossRefGoogle Scholar
  55. 55.
    Zoller M (1988) IFN-treatment of B16-F1 versus B16-F10: relative impact on non-adaptive and T-cell-mediated immune defense in metastatic spread. Clin Exp Metastasis 6:411–429CrossRefGoogle Scholar
  56. 56.
    Van Raamsdonk CD, Deo M (2013) Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res 26:634–645CrossRefGoogle Scholar
  57. 57.
    Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539CrossRefGoogle Scholar
  58. 58.
    Shekhani MT, Jayanthy AS, Maddodi N, Setaluri V (2013) Cancer stem cells and tumor transdifferentiation: implications for novel therapeutic strategies. Am J Stem Cells 2:52–61Google Scholar
  59. 59.
    Murad F (1997) What are the molecular mechanisms for the antiproliferative effects of nitric oxide and cGMP in vascular smooth muscle? Circulation 95:1101–1103CrossRefGoogle Scholar
  60. 60.
    Mujoo K, Sharin VG, Martin E, Choi BK, Sloan C, Nikonoff LE, Kots AY, Murad F (2010) Role of soluble guanylyl cyclase-cyclic GMP signalling in tumor cell proliferation. Nitric Oxide 22:43–50CrossRefGoogle Scholar
  61. 61.
    Guo K, Andres V, Walsh K (1998) Nitric oxide-induced downregulation of Cdk2 activity and cyclin A gene transcription in vascular smooth muscle cells. Circulation 97:2066–2072CrossRefGoogle Scholar
  62. 62.
    Van de Wouwer M, Couzinie C, Serrano-Palero M, Gonzalez-Fernandez O, Galmes-Varela C, Menendez-Antoli P, Grau L, Villalobo A (2012) Activation of the BRCA1/Chk1/p53/p21(Cip1/Waf1) pathway by nitric oxide and cell cycle arrest in human neuroblastoma NB69 cells. Nitric Oxide 26:182–191CrossRefGoogle Scholar
  63. 63.
    Torok NJ, Higuchi H, Bronk S, Gores GJ (2002) Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9. Cancer Res 62:1648–1653Google Scholar
  64. 64.
    Radi R (2013) Peroxynitrite, a stealthy biological oxidant. J Biol Chem 288:26464–26472CrossRefGoogle Scholar
  65. 65.
    Meier-Stephenson V, Riemer J, Narendran A (2017) The HIV protease inhibitor, nelfinavir, as a novel therapeutic approach for the treatment of refractory pediatric leukemia. Onco Targets Ther 10:2581–2593CrossRefGoogle Scholar
  66. 66.
    Kraus M, Muller-Ide H, Ruckrich T, Bader J, Overkleeft H, Driessen C (2014) Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res 38:383–392CrossRefGoogle Scholar
  67. 67.
    Kraus M, Bader J, Overkleeft H, Driessen C (2013) Nelfinavir augments proteasome inhibition by bortezomib in myeloma cells and overcomes bortezomib and carfilzomib resistance. Blood Cancer J 3:e103CrossRefGoogle Scholar
  68. 68.
    Jiang W, Mikochik PJ, Ra JH, Lei H, Flaherty KT, Winkler JD, Spitz FR (2007) HIV protease inhibitor nelfinavir inhibits growth of human melanoma cells by induction of cell cycle arrest. Cancer Res 67:1221–1227CrossRefGoogle Scholar
  69. 69.
    Donia M, Mangano K, Fagone P, De Pasquale R, Dinotta F, Coco M, Padron J, Al-Abed Y, Giovanni Lombardo GA, Maksimovic-Ivanic D, Mijatovic S, Zocca MB, Perciavalle V, Stosic-Grujicic S, Nicoletti F (2012) Unique antineoplastic profile of Saquinavir-NO, a novel NO-derivative of the protease inhibitor Saquinavir, on the in vitro and in vivo tumor formation of A375 human melanoma cells. Oncol Rep 28:682–688CrossRefGoogle Scholar
  70. 70.
    Konovalova NP, Goncharova SA, Volkova LM, Rajewskaya TA, Eremenko LT, Korolev AM (2003) Nitric oxide donor increases the efficiency of cytostatic therapy and retards the development of drug resistance. Nitric Oxide 8:59–64CrossRefGoogle Scholar
  71. 71.
    Malissen N, Grob JJ (2018) Metastatic melanoma: recent therapeutic Progress and future perspectives. Drugs 78:1197–1209CrossRefGoogle Scholar
  72. 72.
    Yarlagadda K, Hassani J, Foote IP, Markowitz J (2017) The role of nitric oxide in melanoma. Biochim Biophys Acta Rev Cancer 1868:500–509CrossRefGoogle Scholar
  73. 73.
    Perrotta C, Bizzozero L, Falcone S, Rovere-Querini P, Prinetti A, Schuchman EH, Sonnino S, Manfredi AA, Clementi E (2007) Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67:7559–7564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Svetlana Paskas
    • 1
  • Emanuela Mazzon
    • 2
  • Maria Sofia Basile
    • 1
    • 3
  • Eugenio Cavalli
    • 2
  • Yousef Al-Abed
    • 4
  • Mingzhu He
    • 4
  • Sara Rakocevic
    • 1
  • Ferdinando Nicoletti
    • 3
    Email author
  • Sanja Mijatovic
    • 1
  • Danijela Maksimovic-Ivanic
    • 1
  1. 1.Department of Immunology, Institute for Biological Research “Sinisa Stankovic”Belgrade UniversityBelgradeSerbia
  2. 2.IRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly
  3. 3.Department of Biomedical and Biotechnological SciencesUniversity of CataniaCataniaItaly
  4. 4.Center for Molecular InnovationThe Feinstein Institute for Medical ResearchManhassetUSA

Personalised recommendations