Investigational New Drugs

, Volume 37, Issue 5, pp 1029–1035 | Cite as

Modified ingenol semi-synthetic derivatives from Euphorbia tirucalli induce cytotoxicity on a large panel of human cancer cell lines

  • Viviane A. O Silva
  • Marcela N. Rosa
  • Olga Martinho
  • Amilcar Tanuri
  • João Paulo Lima
  • Luiz F. Pianowski
  • Rui M. ReisEmail author


The latex from Euphorbia tirucalli is used in Brazil as a folk medicine for several diseases, including cancer. Recently, we showed a cytotoxic activity of E. tirucalli euphol in a wide range of cancer cell lines. Moreover, we showed that euphol inhibits proliferation, motility and colony formation in pancreatic cancer cells, induces autophagy and sensitizes glioblastoma cells to temozolomide cytotoxicity. Herein, we report in vitro activity of three semi-synthetic ingenol compounds derived from E. tirucalli, IngA (ingenol-3-trans-cinnamate), IngB (ingenol-3-hexanoate) and IngC (ingenol-3-dodecanoate), against a large panel of human cancer cell lines. Antineoplastic effects of the three semi-synthetic compounds were assessed using MTS assays on 70 cancer cell lines from a wide array of solid tumors. Additionally, their antitumor potential was compared with known compounds of the same class, namely ingenol-3-angelate (Picato®) and ingenol 3,20-dibenzoate and in combination with standard chemotherapeutic agents. We observed that IngA, B, and C exhibited dose-dependent cytotoxic effects. Amongst the semi-synthetic compounds, IngC displayed the best activity across the tumor cell lines. In comparison with ingenol-3-angelate and ingenol 3,20-dibenzoate, IngC showed a mean of 6.6 and 3.6-fold higher efficacy, respectively, against esophageal cancer cell lines. Besides, IngC sensitized esophageal cancer cells to paclitaxel treatment. In conclusion, the semi-synthetic ingenol compounds, in particular, IngC, demonstrated a potent antitumor activity on all cancer cell lines evaluated. Although the underlying mechanisms of action of IngC are not elucidated, our results provide insights for further studies suggesting IngC as a putative therapy for cancer treatment.


Anticancer Cytotoxic activity Semi-synthetic derivative Ingenol Euphorbia tirucalli 



Amazônia Fitomedicamentos Ltda provided the ingenol semi-synthetic compounds. The Amazônia Fitomedicamentos Ltda. is the sole and exclusive owner of the respective intellectual property rights.


Grants from Amazônia Fitomedicamentos Ltda, and Barretos Cancer Hospital, all from Brazil, supported this study.

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has conflicts of interest. This study was supported by grants from Amazônia Fitomedicamentos Ltda as part of the ingenol pre-clinical studies and Viviane A O Silva and Marcela N. Rosa received a scholarship from Amazônia Fitomedicamentos Ltda. to conduct the study.


  1. 1.
    Dutra RC, Campos MM, Santos AR, Calixto JB (2016) Medicinal plants in Brazil: pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res 112:4–29. CrossRefGoogle Scholar
  2. 2.
    Siller G, Gebauer K, Welburn P, Katsamas J, Ogbourne SM (2009) PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: results of a randomized, double-blind, vehicle-controlled, multicentre, phase IIa study. Aust J Dermatol 50(1):16–22. CrossRefGoogle Scholar
  3. 3.
    Siller G, Rosen R, Freeman M, Welburn P, Katsamas J, Ogbourne SM (2010) PEP005 (ingenol mebutate) gel for the topical treatment of superficial basal cell carcinoma: results of a randomized phase IIa trial. Aust J Dermatol 51(2):99–105. CrossRefGoogle Scholar
  4. 4.
    Dutra RC, Bicca MA, Segat GC, Silva KA, Motta EM, Pianowski LF, Costa R, Calixto JB (2015) The antinociceptive effects of the tetracyclic triterpene euphol in inflammatory and neuropathic pain models: the potential role of PKCepsilon. Neuroscience 303:126–137. CrossRefGoogle Scholar
  5. 5.
    Passos GF, Medeiros R, Marcon R, Nascimento AF, Calixto JB, Pianowski LF (2013) The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. Eur J Pharmacol 698(1–3):413–420. CrossRefGoogle Scholar
  6. 6.
    Silva VAO, Rosa MN, Tansini A, Oliveira RJS, Martinho O, Lima JP, Pianowski LF, Reis RM (2018) In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp Ther Med 16(2):557–566. Google Scholar
  7. 7.
    Silva VAO, Rosa MN, Miranda-Goncalves V, Costa AM, Tansini A, Evangelista AF, Martinho O, Carloni AC, Jones C, Lima JP, Pianowski LF, Reis RM (2018) Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Investig New Drugs.
  8. 8.
    Mali PY, Panchal SS (2017) Euphorbia neriifolia L.: review on botany, ethnomedicinal uses, phytochemistry and biological activities. Asian Pac J Trop Med 10(5):430–438. CrossRefGoogle Scholar
  9. 9.
    Hong KJ, Lee HS, Kim YS, Kim SS (2011) Ingenol protects human T cells from HIV-1 infection. Osong Public Health Res Perspect 2(2):109–114. CrossRefGoogle Scholar
  10. 10.
    Abreu CM, Price SL, Shirk EN, Cunha RD, Pianowski LF, Clements JE, Tanuri A, Gama L (2014) Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 9(5):e97257. CrossRefGoogle Scholar
  11. 11.
    Racke FK, Baird M, Barth RF, Huo T, Yang W, Gupta N, Weldon M, Rutledge H (2012) Unique in vitro and in vivo thrombopoietic activities of ingenol 3,20 dibenzoate, a Ca(++)-independent protein kinase C isoform agonist. PLoS One 7(12):e51059. CrossRefGoogle Scholar
  12. 12.
    Challacombe JM, Suhrbier A, Parsons PG, Jones B, Hampson P, Kavanagh D, Rainger GE, Morris M, Lord JM, Le TT, Hoang-Le D, Ogbourne SM (2006) Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol 177(11):8123–8132CrossRefGoogle Scholar
  13. 13.
    Jorgensen L, McKerrall SJ, Kuttruff CA, Ungeheuer F, Felding J, Baran PS (2013) 14-step synthesis of (+)-ingenol from (+)-3-carene. Science 341(6148):878–882. CrossRefGoogle Scholar
  14. 14.
    Blanco-Molina M, Tron GC, Macho A, Lucena C, Calzado MA, Munoz E, Appendino G (2001) Ingenol esters induce apoptosis in Jurkat cells through an AP-1 and NF-kappaB independent pathway. Chem Biol 8(8):767–778CrossRefGoogle Scholar
  15. 15.
    Mochly-Rosen D, Das K, Grimes KV (2012) Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 11(12):937–957. CrossRefGoogle Scholar
  16. 16.
    Antal CE, Hudson AM, Kang E, Zanca C, Wirth C, Stephenson NL, Trotter EW, Gallegos LL, Miller CJ, Furnari FB, Hunter T, Brognard J, Newton AC (2015) Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell 160(3):489–502. CrossRefGoogle Scholar
  17. 17.
    Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270(48):28495–28498CrossRefGoogle Scholar
  18. 18.
    Ogbourne SM, Suhrbier A, Jones B, Cozzi SJ, Boyle GM, Morris M, McAlpine D, Johns J, Scott TM, Sutherland KP, Gardner JM, Le TT, Lenarczyk A, Aylward JH, Parsons PG (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64(8):2833–2839CrossRefGoogle Scholar
  19. 19.
    Ogbourne SM, Parsons PG (2014) The value of nature's natural product library for the discovery of new chemical entities: the discovery of ingenol mebutate. Fitoterapia 98:36–44. CrossRefGoogle Scholar
  20. 20.
    Gillespie SK, Zhang XD, Hersey P (2004) Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol Cancer Ther 3(12):1651–1658Google Scholar
  21. 21.
    Hampson P, Chahal H, Khanim F, Hayden R, Mulder A, Assi LK, Bunce CM, Lord JM (2005) PEP005, a selective small-molecule activator of protein kinase C, has potent antileukemic activity mediated via the delta isoform of PKC. Blood 106(4):1362–1368. CrossRefGoogle Scholar
  22. 22.
    Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B (2012) Ingenol mebutate gel for actinic keratosis. N Engl J Med 366(11):1010–1019. CrossRefGoogle Scholar
  23. 23.
    Wang D, Liu P (2018) Ingenol-3-angelate suppresses growth of melanoma cells and skin tumor development by downregulation of NF-kappaB-Cox2 signaling. Med Sci Monit 24:486–502CrossRefGoogle Scholar
  24. 24.
    Jiang G, Mendes EA, Kaiser P, Sankaran-Walters S, Tang Y, Weber MG, Melcher GP, Thompson GR 3rd, Tanuri A, Pianowski LF, Wong JK, Dandekar S (2014) Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cdelta-NF-kappaB signaling. Aids 28(11):1555–1566. CrossRefGoogle Scholar
  25. 25.
    Dirks WG, Faehnrich S, Estella IA, Drexler HG (2005) Short tandem repeat DNA typing provides an international reference standard for authentication of human cell lines. Altex 22(2):103–109Google Scholar
  26. 26.
    Silva-Oliveira RJ, Silva VA, Martinho O, Cruvinel-Carloni A, Melendez ME, Rosa MN, de Paula FE, de Souza Viana L, Carvalho AL, Reis RM (2016) Cytotoxicity of allitinib, an irreversible anti-EGFR agent, in a large panel of human cancer-derived cell lines: KRAS mutation status as a predictive biomarker. Cell Oncol 39(3):253–263. CrossRefGoogle Scholar
  27. 27.
    Teixeira TL, Oliveira Silva VA, da Cunha DB, Polettini FL, Thomaz CD, Pianca AA, Zambom FL, da Silva Leitao Mazzi DP, Reis RM, Mazzi MV (2016) Isolation, characterization and screening of the in vitro cytotoxic activity of a novel L-amino acid oxidase (LAAOcdt) from Crotalus durissus terrificus venom on human cancer cell lines. Toxicon 119:203–217. CrossRefGoogle Scholar
  28. 28.
    Konecny GE, Glas R, Dering J, Manivong K, Qi J, Finn RS, Yang GR, Hong KL, Ginther C, Winterhoff B, Gao G, Brugge J, Slamon DJ (2009) Activity of the multikinase inhibitor dasatinib against ovarian cancer cells. Br J Cancer 101(10):1699–1708. CrossRefGoogle Scholar
  29. 29.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRefGoogle Scholar
  30. 30.
    Bruzzese F, Di Gennaro E, Avallone A, Pepe S, Arra C, Caraglia M, Tagliaferri P, Budillon A (2006) Synergistic antitumor activity of epidermal growth factor receptor tyrosine kinase inhibitor gefitinib and IFN-alpha in head and neck cancer cells in vitro and in vivo. Clin Cancer Res 12(2):617–625. CrossRefGoogle Scholar
  31. 31.
    Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM (2004) Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Res 64(9):3243–3255CrossRefGoogle Scholar
  32. 32.
    Dutra RC, de Souza PR, Bento AF, Marcon R, Bicca MA, Pianowski LF, Calixto JB (2012) Euphol prevents experimental autoimmune encephalomyelitis in mice: evidence for the underlying mechanisms. Biochem Pharmacol 83(4):531–542. CrossRefGoogle Scholar
  33. 33.
    Kulkosky J, Sullivan J, Xu Y, Souder E, Hamer DH, Pomerantz RJ (2004) Expression of latent HAART-persistent HIV type 1 induced by novel cellular activating agents. AIDS Res Hum Retrovir 20(5):497–505. CrossRefGoogle Scholar
  34. 34.
    Asada A, Zhao Y, Kondo S, Iwata M (1998) Induction of thymocyte apoptosis by Ca2+−independent protein kinase C (nPKC) activation and its regulation by calcineurin activation. J Biol Chem 273(43):28392–28398CrossRefGoogle Scholar
  35. 35.
    Vigone A, Tron GC, Surico D, Baj G, Appendino G, Surico N (2005) Ingenol derivatives inhibit proliferation and induce apoptosis in breast cancer cell lines. Eur J Gynaecol Oncol 26(5):526–530Google Scholar
  36. 36.
    Serova M, Ghoul A, Benhadji KA, Faivre S, Le Tourneau C, Cvitkovic E, Lokiec F, Lord J, Ogbourne SM, Calvo F, Raymond E (2008) Effects of protein kinase C modulation by PEP005, a novel ingenol angelate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells. Mol Cancer Ther 7(4):915–922. CrossRefGoogle Scholar
  37. 37.
    Fiebig HH, Maier A, Burger AM (2004) Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 40(6):802–820. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Oncology Research CenterBarretos Cancer HospitalSão PauloBrazil
  2. 2.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  3. 3.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal
  4. 4.Laboratory of Molecular Virology, Departaments of genetics, IBFederal University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.Medical OncologyBarretos Cancer HospitalBarretosBrazil
  6. 6.Medical Oncology Department, A C Camargo Cancer CenterSão PauloBrazil
  7. 7.Kyolab Pesquisas FarmacêuticasValinhosBrazil

Personalised recommendations