Advertisement

Investigational New Drugs

, Volume 37, Issue 4, pp 771–778 | Cite as

Cyclodextrin polymers decorated with RGD peptide as delivery systems for targeted anti-cancer chemotherapy

  • Maurizio Viale
  • Rita Tosto
  • Valentina Giglio
  • Giuseppe PappalardoEmail author
  • Valentina Oliveri
  • Irena Maric
  • Maria Addolorata Mariggiò
  • Graziella VecchioEmail author
SHORT REPORT

Summary

Polymeric cyclodextrin–based nanoparticles are currently undergoing clinical trials as nanotherapeutics. Using a non-covalent approach, we decorated two cross-linked cyclodextrin polymers of different molecular weights with an RGD peptide derivative to construct a novel carrier for the targeted delivery of doxorubicin. RGD is the binding sequence for the integrin receptor family that is highly expressed in tumour tissues. The assembled host–guest systems were investigated using NMR and DLS techniques. We found that, in comparison with free doxorubicin or the binary complex doxorubicin/cyclodextrin polymer, the RGD units decorating the cyclodextrin-based nanosystems improved the selectivity and cytotoxicity of the complexed doxorubicin towards cultured human tumour cell lines. Our results suggest that the nanocarriers under study may contribute to the development of new platforms for cancer therapy.

Keywords

Carbohydrates Peptides Nanoparticles Cancer Doxorubicin 

Notes

Acknowledgments

The authors are grateful for support from Università degli Studi di Catania (Piano della Ricerca di Ateneo 2016-2018) and the Italian Ministero dell’Università e della Ricerca. Training grant PO FSE 2014-2020 (Tosto R.) is also gratefully acknowledged.

Funding

This study was funded by Università degli Studi di Catania (Piano della Ricerca di Ateneo 2016-2018) and PO FSE 2014-2020 (MIUR).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the authors declare that they have no conflict of interest.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6.  https://doi.org/10.1016/j.addr.2015.01.002 CrossRefGoogle Scholar
  2. 2.
    Gallego-Yerga L, Benito JM, Blanco-Fernández L et al (2018) Plasmid-templated control of DNA–cyclodextrin nanoparticle morphology through molecular vector design for effective gene delivery. Chem Eur J 24:3825–3835.  https://doi.org/10.1002/chem.201705723 CrossRefGoogle Scholar
  3. 3.
    Chinen AB, Guan CM, Ferrer JR et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115:10530–10574.  https://doi.org/10.1021/acs.chemrev.5b00321 CrossRefGoogle Scholar
  4. 4.
    Spicer CD, Jumeaux C, Gupta B, Stevens MM (2018) Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 47:3574–3620.  https://doi.org/10.1039/c7cs00877e CrossRefGoogle Scholar
  5. 5.
    Velpurisiva P, Gad A, Piel B et al (2017) Nanoparticle design strategies for effective cancer immunotherapy. J Biomed 2:64–77.  https://doi.org/10.7150/jbm.18877 CrossRefGoogle Scholar
  6. 6.
    Xiao Z, Levy-Nissenbaum E, Alexis F et al (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6:696–704.  https://doi.org/10.1021/nn204165v CrossRefGoogle Scholar
  7. 7.
    Danhier F, Le BA, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973.  https://doi.org/10.1021/mp3002733 CrossRefGoogle Scholar
  8. 8.
    Zhu X, Xiao S, Zhou D et al (2018) Design, synthesis and biological evaluation of water-soluble per-O-methylated cyclodextrin-C60 conjugates as anti-influenza virus agents. Eur J Med Chem 146:194–205.  https://doi.org/10.1016/j.ejmech.2018.01.040 CrossRefGoogle Scholar
  9. 9.
    Bonnet V, Gervaise C, Djedaïni-Pilard F et al (2015) Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov Today 20:1120–1126CrossRefGoogle Scholar
  10. 10.
    Wang J, Sun J, Chen Q et al (2012) Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials 33:6877–6888.  https://doi.org/10.1016/j.biomaterials.2012.06.019 CrossRefGoogle Scholar
  11. 11.
    De Barros SDT, Senra JD, Tinoco LW et al (2016) Characterization of a ternary system based on hybrid nanoparticles. J Nanosci Nanotechnol 16:2822–2831.  https://doi.org/10.1166/jnn.2016.11771 CrossRefGoogle Scholar
  12. 12.
    Mejia-Ariza R, Graña-Suárez L, Verboom W, Huskens J (2017) Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B 5:36–52CrossRefGoogle Scholar
  13. 13.
    Caldera F, Tannous M, Cavalli R et al (2017) Evolution of cyclodextrin nanosponges. Int J Pharm 531:470–479.  https://doi.org/10.1016/j.ijpharm.2017.06.072 CrossRefGoogle Scholar
  14. 14.
    Cutrone G, Casas-Solvas JM, Vargas-Berenguel A (2017) Cyclodextrin-modified inorganic materials for the construction of nanocarriers. Int J Pharm 531:621–639.  https://doi.org/10.1016/j.ijpharm.2017.06.080 CrossRefGoogle Scholar
  15. 15.
    Oliveri V, Vecchio G (2018) Cyclodextrin-based nanoparticles in Organic materials as smart nanocarriers for drug delivery, pp 619–658.  https://doi.org/10.1016/B978-0-12-813663-8.00015-4, Elsevier 2018.
  16. 16.
    Gidwani B, Vyas A (2014) Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B Biointerfaces 114:130–137CrossRefGoogle Scholar
  17. 17.
    Giglio V, Viale M, Bertone V et al (2018) Cyclodextrin polymers as nanocarriers for sorafenib. Investig New Drugs 36:370–379.  https://doi.org/10.1007/s10637-017-0538-9 CrossRefGoogle Scholar
  18. 18.
    Giglio V, Sgarlata C, Vecchio G (2015) Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv 5:16664–16671.  https://doi.org/10.1039/c4ra16064a CrossRefGoogle Scholar
  19. 19.
    Anand R, Malanga M, Manet I et al (2013) Citric acid-γ-cyclodextrin crosslinked oligomers as carriers for doxorubicin delivery. Photochem Photobiol Sci 12:1841–1854.  https://doi.org/10.1039/c3pp50169h CrossRefGoogle Scholar
  20. 20.
    Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717CrossRefGoogle Scholar
  21. 21.
    Giglio V, Bellia F, Oliveri V, Vecchio G (2016) Aminocyclodextrin oligomers as protective agents of protein aggregation. Chempluschem 81:660–665.  https://doi.org/10.1002/cplu.201600239 CrossRefGoogle Scholar
  22. 22.
    Davis ME, Zuckerman JE, Choi CHJ et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070.  https://doi.org/10.1038/nature08956 CrossRefGoogle Scholar
  23. 23.
    Liao R, Zhao Y, Liao X et al (2015) Folic acid-polyamine-β-cyclodextrin for targeted delivery of scutellarin to cancer cells. Polym Adv Technol 26:487–494.  https://doi.org/10.1002/pat.3477 CrossRefGoogle Scholar
  24. 24.
    Giglio V, Viale M, Monticone M et al (2016) Cyclodextrin polymers as carriers for the platinum-based anticancer agent LA-12. RSC Adv 6:12461–12466.  https://doi.org/10.1039/c5ra22398a CrossRefGoogle Scholar
  25. 25.
    Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39:235–249.  https://doi.org/10.1016/j.progpolymsci.2013.09.006 CrossRefGoogle Scholar
  26. 26.
    Eitan R, Fishman A, Meirovitz M et al (2014) Liposome-encapsulated doxorubicin citrate (Myocet) for treatment of recurrent epithelial ovarian cancer: a retrospective analysis. Anti-Cancer Drugs 25:101–105.  https://doi.org/10.1097/CAD.0000000000000023 CrossRefGoogle Scholar
  27. 27.
    Mohammad N, Vikram Singh S, Malvi P et al (2015) Strategy to enhance efficacy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: involvement of p53 and Fas receptor ligand complex. Sci Rep 5:11853.  https://doi.org/10.1038/srep11853 CrossRefGoogle Scholar
  28. 28.
    Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999CrossRefGoogle Scholar
  29. 29.
    Sun Y, Kang C, Liu F et al (2017) RGD peptide-based target drug delivery of doxorubicin nanomedicine. Drug Dev Res 78:283–291.  https://doi.org/10.1002/ddr.21399 CrossRefGoogle Scholar
  30. 30.
    Nieberler M, Reuning U, Reichart F et al (2017) Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel) 9:116.  https://doi.org/10.3390/cancers9090116 CrossRefGoogle Scholar
  31. 31.
    Wang F, Li Y, Shen Y et al (2013) The functions and applications of RGD in tumor therapy and tissue engineering. Int J Mol Sci 14:13447–13462CrossRefGoogle Scholar
  32. 32.
    Oliveri V, Grasso GI, Bellia F et al (2015) Soluble sugar-based quinoline derivatives as new antioxidant modulators of metal-induced amyloid aggregation. Inorg Chem 54:2591–2602.  https://doi.org/10.1021/ic502713f CrossRefGoogle Scholar
  33. 33.
    Wang K, Liu Y, Li C et al (2013) Cyclodextrin-responsive micelles based on poly(ethylene glycol)-polypeptide hybrid copolymers as drug carriers. ACS Macro Lett 2:201–205.  https://doi.org/10.1021/mz300568b CrossRefGoogle Scholar
  34. 34.
    Viale M, Giglio V, Monticone M et al (2017) New doxorubicin nanocarriers based on cyclodextrins. Investig New Drugs 35:539–544.  https://doi.org/10.1007/s10637-017-0461-0 CrossRefGoogle Scholar
  35. 35.
    Oliveri V, Bellia F, Viale M et al (2017) Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym 177:355–360.  https://doi.org/10.1016/j.carbpol.2017.08.103 CrossRefGoogle Scholar
  36. 36.
    Goodman SL, Grote HJ, Wilm C (2012) Matched rabbit monoclonal antibodies against v-series integrins reveal a novel v 3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open 1:329–340.  https://doi.org/10.1242/bio.2012364 CrossRefGoogle Scholar
  37. 37.
    Ferlemann FC, Menon V, Condurat AL et al (2017) Surface marker profiling of SH-SY5Y cells enables small molecule screens identifying BMP4 as a modulator of neuroblastoma differentiation. Sci Rep 7:13612.  https://doi.org/10.1038/s41598-017-13497-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRCCS Ospedale Policlinico San Martino, U.O.C. BioterapieGenoaItaly
  2. 2.CNR Istituto di Biostrutture e Bioimmagini, Sede di CataniaCataniaItaly
  3. 3.Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
  4. 4.Dipartimento di Scienze Biomediche ed Oncologia UmanaUniversità degli Studi di Bari Aldo MoroBariItaly

Personalised recommendations