Advertisement

Investigational New Drugs

, Volume 37, Issue 5, pp 912–922 | Cite as

MICONIDINE acetate, a new selective and cytotoxic compound with synergic potential, induces cell cycle arrest and apoptosis in leukemia cells

  • Mariana Franzoni Maioral
  • Natália Marceli Stefanes
  • Álisson Bigolin
  • Gabriele Andressa Zatelli
  • Ana Cláudia Philippus
  • Miriam de Barcellos Falkenberg
  • Maria Cláudia Santos-SilvaEmail author
PRECLINICAL STUDIES
  • 92 Downloads

Summary

Plants are important sources of biologically active compounds and they provide unlimited opportunities for the discovery and development of new drug leads, including new chemotherapeutics. Miconidin acetate (MA) is a hydroquinone derivative isolated from E. hiemalis. In this study we demonstrated that MA was cytotoxic against acute leukemia (AL), solid tumor cells and cancer stem cells, with the strongest effect exhibited against AL. Furthermore, it was non-cytotoxic against non-tumor cells and did not cause significant hemolysis. MA blocks the G2/M phase and causes cytostatic effects, acting in a similar way to dexamethasone by increasing PML expression. The compound also triggered intrinsic and extrinsic apoptosis by modulating Bax, FasR and survivin expression. This led to an extensive mitochondrial damage that resulted in AIF, cytochrome c and endonuclease G release, caspase-3 and PARP cleavage and DNA fragmentation. We have further demonstrated that MA was strongly cytotoxic against neoplastic cells collected from patients with different AL subtypes. Interestingly, MA increased the cytotoxic effect of chemotherapeutics cytarabine and vincristine. This study indicates that MA may be a new agent for AL and highlights its potential as a new source of anticancer drugs.

Graphical abstract

MA blocks G2/M phase with PML expression and KI67 inhibition, ROS generation and intrinsic and extrinsic apoptosis, leading to mitochondrial damage, caspase 3 and PARP cleavage and DNA fragmentation.

Keywords

Cell death Acute leukemia Cytotoxicity Apoptosis Miconidine acetate 

Notes

Acknowledgements

This study was supported by grants and fellowship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) (Brazil). Santos-Silva M.C. is recipient of a Research Fellowship from CNPq (National Counsel of Technological and Scientific Development) (Brazil).

Author contributions

Mariana Maioral: Cell viability, FACS and WB experiments; manuscript writing.

Natália Stefanes: Synergic experiments with chemotherapeutics; manuscript writing.

Álisson Bigolin: Cell viability experiments; manuscript writing.

Gabriele Zatelli: Compound extraction, isolation and identification; manuscript writing.

Ana Philippus: Compound extraction, isolation and identification; manuscript writing.

Miriam de Barcellos Falkenberg: Manuscript review; experimental supervision.

Maria Cláudia Santos-Silva: Manuscript review; experimental supervision.

Funding

This study was supported by fellowships from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) (Brazil) and CNPq (National Counsel of Technological and Scientific Development) (Brazil) n° 306682/2015–0.

Compliance with ethical standards

Conflict of interest

Author A (Mariana Franzoni Maioral) declares that she has no conflict of interest. Author B (Natália Marceli Stefanes) declares that she has no conflict of interest. Author C (Álisson Bigolin) declares that he has no conflict of interest. Author D (Gabriele Andressa Zatelli) declares that she has no conflict of interest. Author E (Ana Cláudia Philippus) declares that she has no conflict of interest. Author F (Miriam de Barcellos Falkenberg) declares that she has no conflict of interest. Author G (Maria Cláudia Santos-Silva) declares that she has no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants have been conducted with the ethical approval of relevant bodies and that such approvals are acknowledged within the manuscript (Medical Ethics Committee CEPSH n°746.486/2014).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043CrossRefGoogle Scholar
  2. 2.
    Wang C-Z, Calway T, Yuan C-S (2012) Herbal medicines as adjuvants for cancer therapeutics. Am J Chin Med 40:657–669CrossRefGoogle Scholar
  3. 3.
    Zia Ul Haq M, Riaz M, Saad B (2016) Anthocyanins and human health: biomolecular and therapeutic aspects. Springer International Publishing, ChamCrossRefGoogle Scholar
  4. 4.
    Singh S, Awasthi M, Pandey VP, Dwivedi U (2017) Natural products as Anticancerous therapeutic molecules with special reference to enzymatic targets topoisomerase, COX, LOX and aromatase. Curr Protein Pept SciGoogle Scholar
  5. 5.
    Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B (2014) Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull 4:421–427Google Scholar
  6. 6.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefGoogle Scholar
  7. 7.
    Costa G, Hreshchyshyn MM, Holland JF (1962) Initial clinical studies with vincristine. Cancer Chemother Rep 24:39–44Google Scholar
  8. 8.
    de S Luna J, dos Santos AF, de Lima MRF, de Omena MC, de Mendonça F a C, Bieber LW, Sant’Ana AEG (2005) A study of the larvicidal and molluscicidal activities of some medicinal plants from Northeast Brazil. J Ethnopharmacol 97:199–206CrossRefGoogle Scholar
  9. 9.
    Romagnolo MB, Souza C (2006) O gênero Eugenia L. (Myrtaceae) na planície de alagável do Alto Rio Paraná, Estados de Mato Grosso do Sul e Paraná, Brasil. Acta Bot Bras 20:529–548CrossRefGoogle Scholar
  10. 10.
    Sobral M, Proença C, Souza M, Mazine F, Lucas E (2015) Myrtaceae. In: Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed 03-21-2018
  11. 11.
    Ferreira FPS, Morais SR, Bara MTF, Conceição EC, Paula JR, Carvalho TC, Vaz BG, Costa HB, Romão W, Rezende MH (2014) Eugenia calycina Cambess extracts and their fractions: their antimicrobial activity and the identification of major polar compounds using electrospray ionization FT-ICR mass spectrometry. J Pharm Biomed Anal 99:89–96CrossRefGoogle Scholar
  12. 12.
    Magina MDA, Dalmarco EM, Dalmarco JB, Colla G, Pizzolatti MG, Brighente IMC (2012) Bioactive triterpenes and phenolics of leaves of Eugenia brasiliensis. Quím Nova 35:1184–1188CrossRefGoogle Scholar
  13. 13.
    Junior C, De AR, Gomes GA, Ferreira RO, de Carvalho MG (2014) Chemical constituents and antioxidant activity of leaves and branches of Eugenia copacabanensis Kiaersk (Myrtaceae). Quím Nova 37:477–482Google Scholar
  14. 14.
    Falkenberg MB (1996) Chinone und andere Inhaltstoffe aus Eugenia hiemalis Cambessèdes und Paramyrciaria glazioviana (Kiaerskou) Sobral (Myrtaceae). 84p. Thesis (Doutorado em Pharmazeutische Chemie). Mathematisch-Naturwissenschaftlichen Fakultät, Universität BonnGoogle Scholar
  15. 15.
    Zatelli GA, Zimath P, Tenfen A, Mendes de Cordova CM, Scharf DR, Simionatto EL, Alberton MD, Falkenberg M (2016) Antimycoplasmic activity and seasonal variation of essential oil of Eugenia hiemalis Cambess. (Myrtaceae). Nat Prod Res 30:1961–1964CrossRefGoogle Scholar
  16. 16.
    Goijman SG, Turrens JF, Marini-Bettolo GB, Stoppani AO (1984) Inhibition del crecimiento y la biosintesis de macromoleculas en Trypanosoma cruzi por productos naturales. Medicina 44:361–370Google Scholar
  17. 17.
    Gunatilaka AA, Berger JM, Evans R, Miller JS, Wisse JH, Neddermann KM, Bursuker I, Kingston DG (2001) Isolation, synthesis, and structure-activity relationships of bioactive benzoquinones from Miconia lepidota from the Suriname rainforest. J Nat Prod 64:2–5CrossRefGoogle Scholar
  18. 18.
    Landa P, Kutil Z, Temml V, Vuorinen A, Malik J, Dvorakova M, Marsik P, Kokoska L, Pribylova M, Schuster D, Vanek T (2012) Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones. Planta Med 78:326–333CrossRefGoogle Scholar
  19. 19.
    Tasdemir D, Brun R, Yardley V, Franzblau SG, Rüedi P (2006) Antituberculotic and antiprotozoal activities of primin, a natural benzoquinone: in vitro and in vivo studies. Chem Biodivers 3:1230–1237CrossRefGoogle Scholar
  20. 20.
    Vasekar M, Rizvi S, Liu X, Vrana KE, Zheng H (2015) Novel immunotherapies for hematological malignancies. Curr Mol PharmacolGoogle Scholar
  21. 21.
    Villalba M, Lopez-Royuela N, Krzywinska E, Rathore MG, Hipskind RA, Haouas H, Allende-Vega N (2014) Chemical metabolic inhibitors for the treatment of blood-borne cancers. Anti Cancer Agents Med Chem 14:223–232CrossRefGoogle Scholar
  22. 22.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  23. 23.
    Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V (2016) Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Mol Basel Switz 21Google Scholar
  24. 24.
    Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, Nelson HM, Giorgio TD, Duvall CL (2013) Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp JoVEGoogle Scholar
  25. 25.
    Krug U, Büchner T, Berdel WE, Müller-Tidow C (2011) The treatment of elderly patients with acute myeloid leukemia. Dtsch Arztebl Int 108:863–870Google Scholar
  26. 26.
    Chizuka A, Suda M, Shibata T, Kusumi E, Hori A, Hamaki T, Kodama Y, Horigome K, Kishi Y, Kobayashi K, Matsumura T, Yuji K, Tanaka Y, Kami M (2006) Difference between hematological malignancy and solid tumor research articles published in four major medical journals. Leukemia 20:1655–1657CrossRefGoogle Scholar
  27. 27.
    Lang F, Wojcik B, Rieger MA (2015) Stem cell hierarchy and clonal evolution in acute lymphoblastic leukemia. Stem Cells Int 2015:137164CrossRefGoogle Scholar
  28. 28.
    Mariani SA, Calabretta B (2014) Leukemia stem cells: old concepts and new perspectives. Mol Asp Med 39:102–109CrossRefGoogle Scholar
  29. 29.
    Reinisch A, Chan SM, Thomas D, Majeti R (2015) Biology and clinical relevance of acute myeloid leukemia stem cells. Semin Hematol 52:150–164CrossRefGoogle Scholar
  30. 30.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP (2015) Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12:445–464CrossRefGoogle Scholar
  31. 31.
    Hojjat-Farsangi M (2015) Novel and emerging targeted-based cancer therapy agents and methods. Tumour Biol 36:543–556CrossRefGoogle Scholar
  32. 32.
    Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD, Fecci PE, Sampson JH (2015) Are BiTEs the “missing link” in cancer therapy? Oncoimmunology 4:e1008339CrossRefGoogle Scholar
  33. 33.
    Dahham SS, Tabana YM, Iqbal MA, Ahamed MBK, Ezzat MO, Majid ASA, Majid AMSA (2015) The anticancer, antioxidant and antimicrobial properties of the Sesquiterpene β-Caryophyllene from the essential oil of aquilaria crassna. Mol Basel Switz 20:11808–11829Google Scholar
  34. 34.
    Korsak J, Goller A, Rzeszotarska A, Pleskacz K (2014) Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates. Cryo Letters 35:15–21Google Scholar
  35. 35.
    Pagano M, Faggio C (2015) The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem Funct 33:351–355CrossRefGoogle Scholar
  36. 36.
    Goldar S, Khaniani MS, Derakhshan SM, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev APJCP 16:2129–2144CrossRefGoogle Scholar
  37. 37.
    Zhang D, Tang B, Xie X, Xiao Y-F, Yang S-M, Zhang J-W (2015) The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 16:1005–1013CrossRefGoogle Scholar
  38. 38.
    Efferth T, Rücker G, Falkenberg M, Manns D, Olbrich A, Fabry U, Osieka R (1996) Detection of apoptosis in KG-1a leukemic cells treated with investigational drugs. Arzneimittelforschung 46:196–200Google Scholar
  39. 39.
    Lindenblatt D, Fischer E, Cohrs S, Schibli R, Grünberg J (2014) Paclitaxel improved anti-L1CAM lutetium-177 radioimmunotherapy in an ovarian cancer xenograft model. EJNMMI Res 4:54CrossRefGoogle Scholar
  40. 40.
    Pedrini FS, Chiaradia LD, Licínio MA, de Moraes ACR, Curta JC, Costa A, Mascarello A, Creczinsky-Pasa TB, Nunes RJ, Yunes RA, Santos-Silva MC (2010) Induction of apoptosis and cell cycle arrest in L-1210 murine lymphoblastic leukaemia cells by (2E)-3-(2-naphthyl)-1-(3′-methoxy-4′-hydroxy-phenyl)-2-propen-1-one. J Pharm Pharmacol 62:1128–1136CrossRefGoogle Scholar
  41. 41.
    Salsman J, Stathakis A, Parker E, Chung D, Anthes LE, Koskowich KL, Lahsaee S, Gaston D, Kukurba KR, Smith KS, Chute IC, Léger D, Frost LD, Montgomery SB, Lewis SM, Eskiw C, Dellaire G (2017) PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4. Sci Rep 7:45038CrossRefGoogle Scholar
  42. 42.
    Mazza M, Pelicci PG (2013) Is PML a tumor suppressor? Front Oncol 3Google Scholar
  43. 43.
    Salomoni P, Dvorkina M, Michod D (2012) Role of the promyelocytic leukaemia protein in cell death regulation. Cell Death Dis 3:e247CrossRefGoogle Scholar
  44. 44.
    Jiang L, Xu L, Xie J, Li S, Guan Y, Zhang Y, Hou Z, Guo T, Shu X, Wang C, Fan W, Si Y, Yang Y, Kang Z, Fang M, Liu Q (2015) Inhibition of autophagy overcomes glucocorticoid resistance in lymphoid malignant cells. Cancer Biol. Ther. 16:466–476CrossRefGoogle Scholar
  45. 45.
    Bose P, Grant S (2015) Rational combinations of targeted agents in AML. J Clin Med 4:634–664CrossRefGoogle Scholar
  46. 46.
    Dalla Via L, García-Argáez AN, Martínez-Vázquez M, Grancara S, Martinis P, Toninello A (2014) Mitochondrial permeability transition as target of anticancer drugs. Curr Pharm Des 20:223–244CrossRefGoogle Scholar
  47. 47.
    Suzuki-Karasaki Y, Suzuki-Karasaki M, Uchida M, Ochiai T (2014) Depolarization controls TRAIL-sensitization and tumor-selective killing of Cancer cells: crosstalk with ROS. Front Oncol 4Google Scholar
  48. 48.
    Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández DE, Fritz E, Abarzua S, Martinez A, Elorza AA, Alvarez A et al (2015) Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci 9Google Scholar
  49. 49.
    Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8:603–619CrossRefGoogle Scholar
  50. 50.
    Chen X, Duan N, Zhang C, Zhang W (2016) Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer 7:314–323CrossRefGoogle Scholar
  51. 51.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375–2390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mariana Franzoni Maioral
    • 1
    • 2
  • Natália Marceli Stefanes
    • 1
    • 2
  • Álisson Bigolin
    • 1
    • 2
  • Gabriele Andressa Zatelli
    • 2
  • Ana Cláudia Philippus
    • 2
  • Miriam de Barcellos Falkenberg
    • 2
  • Maria Cláudia Santos-Silva
    • 1
    • 2
    • 3
    Email author
  1. 1.Experimental Oncology and Hemopathies Laboratory, Clinical Analysis DepartmentFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Post-Graduation Program in Pharmacy, Health Science CenterFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Laboratório de Oncologia Experimental e Hemopatias (LOEH), Departamento de Análises ClínicasCentro de Ciências da Saúde - Universidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations