Investigational New Drugs

, Volume 37, Issue 5, pp 1107–1116 | Cite as

Human antigen R and drug resistance in tumors

  • Fenghai ZhouEmail author
  • Fa Zhang
  • Chuan Zhou
  • Mengtian Liang
  • Zhonglin Cai
  • Haidi Lv
  • Wenjuan Li
  • Xupan Wei


The human embryonic lethal abnormal visual protein, HuR, belongs to the Hu family of RNA-binding proteins. Over the past two decades, HuR has been extensively associated with multiple biological characteristics of tumors, including tumor development and progression, angiogenesis, invasion, migration and prognosis, since this protein regulates the stability of cancer-associated target mRNAs due to its posttranscriptional regulatory mechanisms. A recent investigation of the multiple functions of HuR has provided emerging evidence of its role in drug resistance in various tumors. Herein, we demonstrate the roles of HuR proteins in the development of drug resistance, examine their involvement in various mechanisms, including apoptosis, the ABC transporter family, the cell cycle and the DNA damage response, and provide insight into ongoing studies for developing therapeutic strategies aimed at targeting this molecule in tumor cells.


HuR Drug therapy Neoplasms RNA-binding proteins Multidrug-resistant 


Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.


The Talent Innovation and Enterprise Program of Lanzhou (grant no. 2015-RC-16).

Compliance with ethical standards

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Conflict of interest



  1. 1.
    Robinow S, Campos AR, Yao KM (1988) The elav gene product of drosophila, required in neurons, has three RNP consensus motifs. Science 242(4885):1570–1572CrossRefGoogle Scholar
  2. 2.
    von Roretz C, Di Marco S, Mazroui R (2011) Turnover of AU-rich-containing mRNAs during stress: a matter of survival. Wiley Interdiscip Rev RNA 2(3):336–347CrossRefGoogle Scholar
  3. 3.
    Embade N, Fernández-Ramos D, Varela-Rey M, Beraza N, Sini M, de Juan VG, Woodhoo A, Martínez-López N, Rodríguez-Iruretagoyena B, Bustamante FJ, de la Hoz AB, Carracedo A, Xirodimas DP, Rodríguez MS, Lu SC, Mato JM, Martínez-Chantar ML (2012) Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology 55(4):1237–1248CrossRefGoogle Scholar
  4. 4.
    de Sousa GF, Lima Mde A, Custodio DF et al (2015) Chemogenomic study of carboplatin in Saccharomyces cerevisiae: inhibition of the NEDDylation process overcomes cellular resistance mediated by HuR and Cullin proteins. PLoS One 10(12):e0145377CrossRefGoogle Scholar
  5. 5.
    Jeyaraj SC, Singh M, Ayupova DA, Govindaraju S, Lee BS (2010) Transcriptional control of human antigen R by bone morphogenetic protein. J Biol Chem 285(7):4432–4440CrossRefGoogle Scholar
  6. 6.
    Cho SJ, Zhang J, Chen X (2010) RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Res 38(7):2256–2267CrossRefGoogle Scholar
  7. 7.
    Cho SJ, Jung YS, Zhang J, Chen X (2012) The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem 287(18):14535–14544CrossRefGoogle Scholar
  8. 8.
    Gabai VL, Meng L, Kim G, Mills TA, Benjamin IJ, Sherman MY (2012) Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol 32(5):929–940CrossRefGoogle Scholar
  9. 9.
    Winkler C (2014) Doller A, Imre G, et al. Attenuation of the ELAV1-like protein HuR sensitizes adenocarcinoma cells to the intrinsic apoptotic pathway by increasing the translation of caspase-2L. Cell Death Dis 5:e1321CrossRefGoogle Scholar
  10. 10.
    Griffiths-Jones S, Saini HK, Van Dongen S et al (2008) miR base: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158CrossRefGoogle Scholar
  11. 11.
    Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125(6):1111–1124CrossRefGoogle Scholar
  12. 12.
    Srikantan S, Abdelmohsen K, Lee EK, Tominaga K, Subaran SS, Kuwano Y, Kulshrestha R, Panchakshari R, Kim HH, Yang X, Martindale JL, Marasa BS, Kim MM, Wersto RP, Indig FE, Chowdhury D, Gorospe M (2011) Translational control of TOP2A influences doxorubicin efficacy. Mol Cell Biol 31(18):3790–3801CrossRefGoogle Scholar
  13. 13.
    Tominaga K, Srikantan S, Lee EK, Subaran SS, Martindale JL, Abdelmohsen K, Gorospe M (2011) Competitive regulation of nucleolin expression by HuR and miR-494. Mol Cell Biol 31(20):4219–4231CrossRefGoogle Scholar
  14. 14.
    Jakstaite A, Maziukiene A, Silkuniene G et al (2015) HuR mediated post-transcriptional regulation as a new potential adjuvant therapeutic target in chemotherapy for pancreatic cancer. World J Gastroenterol 21(46):13004–13019CrossRefGoogle Scholar
  15. 15.
    Blanco FF, Jimbo M, Wulfkuhle J et al (2016) The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene 35(19):41CrossRefGoogle Scholar
  16. 16.
    Romeo C, Weber MC, Zarei M, DeCicco D, Chand SN, Lobo AD, Winter JM, Sawicki JA, Sachs JN, Meisner-Kober N, Yeo CJ, Vadigepalli R, Tykocinski ML, Brody JR (2016) HuR contributes to TRAIL resistance by restricting death receptor 4 expression in pancreatic cancer cells. Mol Cancer Res 14(7):599–611CrossRefGoogle Scholar
  17. 17.
    Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, Dasgupta A, Keen JC, Yeo CJ, Gorospe M, Brody JR (2009) The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 69(11):4567–4572CrossRefGoogle Scholar
  18. 18.
    Wu Q, Yang Z, Xia L et al (2014) Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters. Oncotarget 5:11552–11563Google Scholar
  19. 19.
    Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F (2006) The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets 7(7):893–909CrossRefGoogle Scholar
  20. 20.
    Li S, Zhang W, Yin X, Xing S, Xie H, Cao Z, Zhao B (2015) Mouse ATP-binding cassette (ABC) transporters conferring multi-drug resistance. Anti Cancer Agents Med Chem 15(4):423–432CrossRefGoogle Scholar
  21. 21.
    Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li K, Zhou L, Sun Y, Li M, Zhou J, An Y, Wu K, Nie Y, Fan D (2014) miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene 33:3267–3276CrossRefGoogle Scholar
  22. 22.
    To KK, Leung WW, Ng SS et al (2015) Exploiting a novel miR-519c-HuR-ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp Cell Res 338(2):222–231CrossRefGoogle Scholar
  23. 23.
    Liu H, Song X, Hou J, Zhao Z, Chang J (2018) Posttranscriptional regulation of human antigen R by miR-133b enhances docetaxel cytotoxicity through the inhibition of ATP-binding cassette subfamily G member 2 in prostate cancer cells. DNA Cell Biol 37(3):210–219CrossRefGoogle Scholar
  24. 24.
    Bhatnagar N, Li X, Padi SK et al (2010) Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 1:e105CrossRefGoogle Scholar
  25. 25.
    Puhr M, Hoefer J, Schäfer G, Erb HHH, Oh SJ, Klocker H, Heidegger I, Neuwirt H, Culig Z (2012) Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 181(6):2188–2201CrossRefGoogle Scholar
  26. 26.
    Yang Y, Jia D, Kim H, Abd Elmageed ZY, Datta A, Davis R, Srivastav S, Moroz K, Crawford BE, Moparty K, Thomas R, Hudson RS, Ambs S, Abdel-Mageed AB (2016) Dysregulation of miR-212 promotes castration resistance through hnRNPH1-mediated regulation of AR and AR-V7: implications for racial disparity of prostate cancer. Clin Cancer Res 22(7):1744–1756CrossRefGoogle Scholar
  27. 27.
    Feng B, Wang R, Chen LB (2012) Review of MiR-200b and cancer chemosensitivity. Biomed Pharmacother 66:397–402CrossRefGoogle Scholar
  28. 28.
    Shi GH, Ye DW, Yao XD, Zhang SL, Dai B, Zhang HL, Shen YJ, Zhu Y, Zhu YP, Xiao WJ, Ma CG (2010) Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 31(7):867–873CrossRefGoogle Scholar
  29. 29.
    Liao H, Xiao Y, Hu Y et al (2016) Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncol Rep 35(1):64–72CrossRefGoogle Scholar
  30. 30.
    Wen D, Peng Y, Lin F, Singh RK, Mahato RI (2017) Micellar delivery of miR-34a modulator Rubone and paclitaxel in resistant prostate cancer. Cancer Res 77(12):3244–3254CrossRefGoogle Scholar
  31. 31.
    Armstrong CM, Liu C, Lou W, Lombard AP, Evans CP, Gao AC (2017) MicroRNA-181a promotes docetaxel resistance in prostate cancer cells. Prostate 77(9):1020–1028CrossRefGoogle Scholar
  32. 32.
    Ma X, Zou L, Li X, Chen Z, Lin Q, Wu X (2018) MicroRNA-195 regulates docetaxel resistance by targeting clusterin in prostate cancer. Biomed Pharmacother 99:445–450CrossRefGoogle Scholar
  33. 33.
    Fujita Y, Kojima T, Kawakami K, Mizutani K, Kato T, Deguchi T, Ito M (2015) miR-130a activates apoptotic signaling through activation of caspase-8 in taxane-resistant prostate cancer cells. Prostate 75(14):1568–1578CrossRefGoogle Scholar
  34. 34.
    Xu B, Niu X, Zhang X et al (2011) miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 50(1–2):207–213CrossRefGoogle Scholar
  35. 35.
    Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A, Sato A, Kondo S, Kojima T, Deguchi T, Ito M (2010) MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 285(25):19076–19084CrossRefGoogle Scholar
  36. 36.
    Chen L, Cao H, Feng Y (2018) MiR-199a suppresses prostate cancer paclitaxel resistance by targeting YES1. World J Urol 36(3):357–365CrossRefGoogle Scholar
  37. 37.
    Wang Y, Lieberman R, Pan J et al (2016) miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol Cancer 15(1):70CrossRefGoogle Scholar
  38. 38.
    Li B, Jin X, Meng H et al (2017) Morin promotes prostate cancer cells chemosensitivity to paclitaxel through miR-155/GATA3 axis. Oncotarget 8(29):47849–47860Google Scholar
  39. 39.
    Wang X, Yang B, Ma B et al (2016) The UCA1/miR-204/Sirt1 axis modulates docetaxel sensitivity of prostate cancer cells. Cancer Chemother Pharmacol 78(5):1025–1031CrossRefGoogle Scholar
  40. 40.
    Lin GL, Ting HJ, Tseng TC et al (2017) Modulation of the mRNA-binding protein HuR as a novel reversal mechanism of epirubicin-triggered multidrug resistance in colorectal cancer cells. PLoS ONE 12(10):e0185625CrossRefGoogle Scholar
  41. 41.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219CrossRefGoogle Scholar
  42. 42.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  43. 43.
    Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7(12):1001–1012CrossRefGoogle Scholar
  44. 44.
    Coultas L, Strasser A (2003) The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13(2):115–123CrossRefGoogle Scholar
  45. 45.
    Letai A (2005) Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 115(10):2648–2655CrossRefGoogle Scholar
  46. 46.
    Filippova N, Yang X, Wang Y, Gillespie GY, Langford C, King PH, Wheeler C, Nabors LB (2011) The RNA-binding protein HuR promotes glioma growth and treatment resistance. Mol Cancer Res 9(5):648–659CrossRefGoogle Scholar
  47. 47.
    Korshunov A, Golanov A, Sycheva R, Pronin I (1999) Prognostic value of tumour associated antigen immunoreactivity and apoptosis in cerebral glioblastomas: an analysis of 168 cases. J Clin Pathol 52(8):574–580CrossRefGoogle Scholar
  48. 48.
    Streffer JR, Rimner A, Rieger J, Naumann U, Rodemann HP, Weller M (2002) BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells. J Neurooncol 56(1):43–49CrossRefGoogle Scholar
  49. 49.
    Muralidharan R, Mehta M, Ahmed R, Roy S, Xu L, Aubé J, Chen A, Zhao YD, Herman T, Ramesh R, Munshi A (2017) HuR-targeted small molecule inhibitor exhibits cytotoxicity towards human lung cancer cells. Sci Rep 7(1):9694CrossRefGoogle Scholar
  50. 50.
    Badawi A, Biyanee A, Nasrullah U et al (2018) Inhibition of IRES-dependent translation of caspase-2 by HuR confers chemotherapeutic drug resistance in colon carcinoma cells. Oncotarget 9(26):18367–18385CrossRefGoogle Scholar
  51. 51.
    Kojima K, Fujita Y, Nozawa Y, Deguchi T, Ito M (2010) MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70(14):1501–1512CrossRefGoogle Scholar
  52. 52.
    Goldie JH, Coldman AJ (1979) A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 63(11–12):1727–1733Google Scholar
  53. 53.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512CrossRefGoogle Scholar
  54. 54.
    Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183(1):10–17CrossRefGoogle Scholar
  55. 55.
    Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555CrossRefGoogle Scholar
  56. 56.
    Alkarain A, Jordan R, Slingerland J (2004) p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia 9(1):67–80CrossRefGoogle Scholar
  57. 57.
    Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74CrossRefGoogle Scholar
  58. 58.
    Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456):701–704CrossRefGoogle Scholar
  59. 59.
    Cheng JD, Werness BA et al (1999) Paradoxical correlations of cyclin-dependent kinase inhibitors p21waf1/cip1 and p27kip1 in metastatic colorectal carcinoma. Clin Cancer Res 5(5):1057–1062Google Scholar
  60. 60.
    Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev 3(3):155–168CrossRefGoogle Scholar
  61. 61.
    Bargonetti J, Manfredi JJ (2002) Multiple roles of the tumor suppressor p53. Curr Opin Oncol 14:86–91CrossRefGoogle Scholar
  62. 62.
    Guertin AD, Li J, Liu Y, Hurd MS, Schuller AG, Long B, Hirsch HA, Feldman I, Benita Y, Toniatti C, Zawel L, Fawell SE, Gilliland DG, Shumway SD (2013) Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol Cancer Ther 12(8):1442–1452CrossRefGoogle Scholar
  63. 63.
    Lal S, Burkhart RA, Beeharry N, Bhattacharjee V, Londin ER, Cozzitorto JA, Romeo C, Jimbo M, Norris ZA, Yeo CJ, Sawicki JA, Winter JM, Rigoutsos I, Yen TJ, Brody JR (2014) HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells. Cancer Res 74(4):1128–1140CrossRefGoogle Scholar
  64. 64.
    D'Amours D, Desnoyers S, D'Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342(Pt 2):249–268CrossRefGoogle Scholar
  65. 65.
    Bouwman P, Jonkers J (2014) Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? Clin Cancer Res 20:540–547CrossRefGoogle Scholar
  66. 66.
    Johnson N, Johnson SF, Yao W, Li YC, Choi YE, Bernhardy AJ, Wang Y, Capelletti M, Sarosiek KA, Moreau LA, Chowdhury D, Wickramanayake A, Harrell MI, Liu JF, D'Andrea AD, Miron A, Swisher EM, Shapiro GI (2013) Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc Natl Acad Sci U S A 110:17041–17046CrossRefGoogle Scholar
  67. 67.
    Chand SN, Zarei M, Schiewer MJ et al (2017) Posttranscriptional regulation of PARG mRNA by HuR facilitates DNA repair and resistance to PARP inhibitors. Cancer Res 77(18):5011–5025CrossRefGoogle Scholar
  68. 68.
    Guo J, Lv J, Chang S (2016) Inhibiting cytoplasmic accumulation of HuR synergizes genotoxic agents in urothelial carcinoma of the bladder. Oncotarget 7(29):45249–45262CrossRefGoogle Scholar
  69. 69.
    Hill R, Li Y, Tran LM, Dry S, Calvopina JH, Garcia A, Kim C, Wang Y, Donahue TR, Herschman HR, Wu H (2012) Cell intrinsic role of COX-2 in pancreatic cancer development[J]. Mol Cancer Ther 11(10):2127–2137CrossRefGoogle Scholar
  70. 70.
    Richards NG, Rittenhouse DW, Freydin B et al (2010) HuR status is a powerful marker for prognosis and response to gemcitabine-based chemotherapy for resected pancreatic ductal adenocarcinoma patients. Ann Surg 252(3):499–505Google Scholar
  71. 71.
    Janakiraman H, House RP, Talwar S et al (2017) Repression of caspase-3 and RNA-binding protein HuR cleavage by cyclooxygenase-2 promotes drug resistance in oral squamous cell carcinoma. Oncogene 36(22):3137–3148CrossRefGoogle Scholar
  72. 72.
    Ayala GE, Dai H, Ittmann M, Li R, Powell M, Frolov A, Wheeler TM, Thompson TC, Rowley D (2004) Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 64:6082–6090CrossRefGoogle Scholar
  73. 73.
    Zarei M (2017) Lal S1, Parker SJ, et al. posttranscriptional upregulation of IDH1 by HuR establishes a powerful survival phenotype in pancreatic cancer cells. Cancer Res 77(16):4460–4471CrossRefGoogle Scholar
  74. 74.
    Williams TK, Costantino CL, Bildzukewicz NA et al (2010) pp32 (ANP32A) expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs. PLoS One 5(11):e15455CrossRefGoogle Scholar
  75. 75.
    Latorre E, Tebaldi T, Viero G, Spartà A, Quattrone A, Provenzani A (2012) Downregulation of HuR as a new mechanism of doxorubicin resistance in breast cancer cells. Mol Cancer 11:13CrossRefGoogle Scholar
  76. 76.
    Zhou Y, Chang R, Ji W, Wang N, Qi M, Xu Y, Guo J, Zhan L (2016) Loss of scribble promotes snail translation through translocation of HuR and enhances cancer drug resistance. J Biol Chem 291(1):291–302CrossRefGoogle Scholar
  77. 77.
    Heinonen M, Bono P, Narko K (2005) Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 65(6):2157–2161CrossRefGoogle Scholar
  78. 78.
    Lim SJ, Kim HJ, Kim JY (2007) Expression of HuR is associated with increased cyclooxygenase-2 expression in uterine cervical carcinoma. Int J Gynecol Pathol 26(3):229–234CrossRefGoogle Scholar
  79. 79.
    Kurosu T, Ohga N, Hida Y (2011) HuR keeps an angiogenic switch on by stabilising mRNA of VEGF and COX-2 in tumour endothelium. Br J Cancer 104(5):819–829CrossRefGoogle Scholar
  80. 80.
    Cha JD, Li S, Cha IH (2011) Association between expression of embryonic lethal abnormal vision-like protein HuR and cyclooxygenase-2 in oral squamous cell carcinoma. Head Neck 33(5):627–637CrossRefGoogle Scholar
  81. 81.
    Zhu Z, Wang B, Bi J (2013) Cytoplasmic HuR expression correlates with P-gp, HER-2 positivity, and poor outcome in breast cancer. Tumour Biol 34(4):2299–2308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fenghai Zhou
    • 1
    Email author
  • Fa Zhang
    • 1
  • Chuan Zhou
    • 2
  • Mengtian Liang
    • 1
  • Zhonglin Cai
    • 3
  • Haidi Lv
    • 1
  • Wenjuan Li
    • 1
  • Xupan Wei
    • 1
  1. 1.Department of UrologyGansu Provincial HospitalLanzhouPeople’s Republic of China
  2. 2.Department of UrologyWest China Hospital of Sichuan UniversityChengduPeople’s Republic of China
  3. 3.Department of Urology, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingPeople’s Republic of China

Personalised recommendations