Advertisement

In vitro and in vivo cytotoxic activity and human serum albumin interaction for a methoxy-styryl-thiosemicarbazone

  • Otávio Augusto Chaves
  • Isabela S. de Castro
  • Carla Marins Goulart
  • Myrtes S. S. Bellieny
  • José Carlos Netto-FerreiraEmail author
  • Juliana Echevarria-LimaEmail author
  • Aurea Echevarria
PRECLINICAL STUDIES
  • 54 Downloads

Summary

Thiosemicarbazone is a class of compounds with potential applications in medicine, presenting high capacity to inhibit the growth of cancer cells as well as low toxicity. Because of high interest in anticancer studies involving thiosemicarbazones as new chemotherapeutic agents, a synthetic thiosemicarbazone derivative, 4-N-(2′-methoxy-styryl)-thiosemicarbazone (MTSC) was evaluated in vivo against Ehrlich carcinoma in an animal model. In vivo results demonstrated that MTSC treatment induced the survival of mice and altered significantly the body weight of the surviving mice 12 days after tumor inoculation. Treatment with 30 mg/kg of MTSC exhibited effective cytotoxic activity with T/C values of 150.49% (1 dose) and 278% (2 doses). Its interaction with human serum albumin (HSA), which plays a crucial role in the biodistribution of a wide variety of ligands, was investigated by multiple spectroscopic techniques at 296 K, 303 K, and 310 K, as well as by theoretical calculations. The interaction between HSA and MTSC occurs via ground-state association in the subdomain IIA (Sudlow’s site I). The binding is moderate (Ka ≈ 104 M–1), spontaneous, entropically, and enthalpically driven. Molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces. Overall, the interaction HSA:MTSC could provide therapeutic benefits, improving its cytotoxic efficacy and tolerability.

Keywords

Thiosemicarbazones Ehrlich carcinoma Human serum albumin Spectroscopy Molecular docking 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from the Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico, Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Programa de Oncobiologia UFRJ. The authors acknowledge Profa. Dra. Nanci Camara de Lucas Garden (UFRJ) for the time-resolved and synchronous fluorescence facilities, as well as Prof. Dr. Carlos M.R. Sant’Anna (UFRRJ) for the computational facilities. O.A.C. acknowledges Instituto Euvaldo Lodi (IEL-Brazil) for the researcher grant in the SENAI Innovation Institute for Green Chemistry (Encomenda Rhae Trainee II - 404988/2017-2 -Process: 350173/2018-4). J.C.N.-F. acknowledges INMETRO for a Visiting Professor fellowship. The authors thank Dra. Vivian M. Rumjanek from Instituto de Bioquímica Médica of UFRJ for providing cell lines.

Funding

The study was supported by Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The in vivo assays procedures were performed in accordance to the Brazilian Guidelines (Brazilian Directive for Care and Use of Animals for Teaching and Research-DBCA) published by the Brazilian Council for Control of Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal – CONCEA) and Brazilian Federal Law 11.794 (October 8, 2008). The local research ethics committee of the Universidade Federal Rural do Rio de Janeiro, Brazil, approved the protocols used in the present study (Number 6985210617).

References

  1. 1.
    Beraldo H (2004) Semicarbazones and thiosemicarbazones: their wide pharmacological profile and clinical applications. Quim Nova 3:461–471CrossRefGoogle Scholar
  2. 2.
    Smee DF, Sidwell RW (2003) A review of compounds exhibiting antorthopoxvirus activity in animal models. Antivir Res 57:41–52CrossRefGoogle Scholar
  3. 3.
    Paiva RO, Kneipp LF, Goulart CM, Albuquerque MA, Echevarria A (2014) Antifungal activities of thiosemicarbazones and semicarbazones against mycotoxigenic fungi. Ciên Agrotec 38:531–537CrossRefGoogle Scholar
  4. 4.
    Dobek AS, Klayman DL, Dickson ET Jr, Scovill JP, Tramont EC (1980) Inhibition of clinically significant bacterial organisms in vitro by 2-acetylpyridine thiosemicarbazones. Antimicrob Agents Chemother 18:27–36CrossRefGoogle Scholar
  5. 5.
    Soares ROA, Echevarria A, Bellieny MSS, Pinho RT, de Leo RMM, Seguins WS, Machado GM, Canto-Cavalheiro MM, Leon LL (2011) Evaluation of thiosemicarbazones and semicarbazones as potential agents anti-Trypanosoma cruzi. Exp Parasitol 129:381–387CrossRefGoogle Scholar
  6. 6.
    Melos JLR, Torres-Santos EC, Faiões VS, Del Cistia CN, Sant’Anna CMR, Rodrigues-Santos CE, Echevarria A (2015) Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonenses. Eur J Med Chem 103:409–417CrossRefGoogle Scholar
  7. 7.
    Santos JS, Melos JLR, Lima GS, Lyra JC, Guedes GP, Rodrigues-Santos CE, Echevarria A (2017) Synthesis, anti-Trypanosoma cruzi activity and quantitative structure relationships of some fluorinated thiosemicarbazones. J Fluorine Chem 195:31-36.Google Scholar
  8. 8.
    Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao YT, Lovejoy DB, Kumar N, Bernhardt PV, Richardson DR (2007) Design, synthesis, and characterization of novel iron chelators: structure–activity relationships of the 2-benzoylpyridine thiosemicarbazone series and their 3-nitrobenzoyl analogues as potent antitumor agents. J Med Chem 50:3716–3729CrossRefGoogle Scholar
  9. 9.
    Serda M, Kalinowski DS, Rasko N, Potůčkvá E, Mrozek-Wilczkiewicz A, Musiol R, Malecki JG, Sajewicz M, Ratuszna A, Muchowicz A, Gola J, Šimůnek T, Richardson D, Polanski J (2014) Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical Structure-Activity Relationships. PLoS One 9:e110291CrossRefGoogle Scholar
  10. 10.
    Santos TAR, Silva AC, Silva EB, Gomes PATM, Espindola JWP, Cardoso MVO, Moreira DRM, Leite ACL, Pereira VRA (2016) Antitumor and immunoregulatory activities of thiosemicarbazones and 1,3-thiazoles in Jurkat and HT-29 cells. Biomed Pharmacother 82:555–560CrossRefGoogle Scholar
  11. 11.
    Kalinowski DS, Quach P, Richardson DR (2009) Thiosemicarbazones: the new wave in cancer treatment. Future Med Chem 6:1143–1151CrossRefGoogle Scholar
  12. 12.
    Krishnan K, Prathiba K, Jayaprakash V, Basu A, Mishra N, Zhou B, Hu S, Yen Y (2008) Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones. Bioorg Med Chem Lett 18:6248–6250CrossRefGoogle Scholar
  13. 13.
    French FA, Blanz EJ Jr (1965) The carcinostatic activity of α-(N)-heterocyclic carboxaldehydethiosemicarbazones. I. Isoquinoline-1-carboxaldehyde thiosemicarbazones. Cancer Res 25:1454–1458Google Scholar
  14. 14.
    Sharma N, Pathak DP (2016) Combatting challenging aspects of cancer with thiosemicarbazones. Int J Pharm Pharm Sci 8:27–34Google Scholar
  15. 15.
    Guo Z-L, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GC-F (2016) The novel thiosemicarbazone, di-2-pyridil ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanism. J Hematol Oncol 9:1–16CrossRefGoogle Scholar
  16. 16.
    Elsherbiny NM, Al-Gayyar MMH (2016) Anti-tumor activity of arjunolic acid against Ehrlich ascites carcinoma cells in vivo and in vitro through blocking TGF-β type 1 receptor. Biomed Pharmacother 82:28–34CrossRefGoogle Scholar
  17. 17.
    Xu L, Hu Y-X, Li J, Liu Y-F, Zhang L, Ai H-X, Liu H-S (2017) Probing the binding reaction of cytarabine to human serum albumin using multispectroscopic techniques with the aid of molecular docking. J Photochem Photobiol B 173:187–195CrossRefGoogle Scholar
  18. 18.
    Dorraji MSS, Azar VP, Rasoulifard MH (2014) Interaction between deferiprone and human serum albumin: Multi-spectroscopic, electrochemical and molecular docking methods. Eur J Pharm Sci 64:9–17CrossRefGoogle Scholar
  19. 19.
    Burmudžija A, Ratković Z, Muškinja J, Janković N, Ranković B, Kosanić M, Đorđević S (2016) Ferrocenyl based pyrazoline derivatives with vanillic core: synthesis and investigation of their biological properties. RSC Adv 6:91420–91430CrossRefGoogle Scholar
  20. 20.
    Wardell M, Wang Z, Ho JX, Robert J, Ruker F, Ruble J, Carter DC (2002) The atomic structure of human methemalbumin at 1.9 Å. Biochem Biophys Res Commun 291:913–918CrossRefGoogle Scholar
  21. 21.
    Chaves OA, Amorim APO, Castro LHE, Sant’Anna CMR, de Oliveira MCC, Cesarin-Sobrinho D, Netto-Ferreira JC, Ferreira ABB (2015) Fluorescence and docking studies of the interaction between human serum albumin and pheophytin. Molecules 20:19526–19539CrossRefGoogle Scholar
  22. 22.
    Janković N, Muškinja J, Ratković Z, Bugarčić Z, Ranković B, Kosanić M, Stefanović S (2016) Solvent-free synthesis of novel vanillidene derivatives of Meldrum's acid: biological evaluation, DNA and BSA binding study. RSC Adv 6:39452–39459CrossRefGoogle Scholar
  23. 23.
    Sharma R, Choudhary S, Kishore N (2012) Insights into the binding of the drugs diclofenac sodium and cefotaxime sodium to serum albumin: Calorimetry and spectroscopy. Eur J Pharm Sci 46:435–445CrossRefGoogle Scholar
  24. 24.
    Demoro B, de Almeida RF, Marques F, Matos CP, Otero L, Pessoa JC, Santos I, Rodríguez A, Moreno V, Lorenzo J, Gambino D, Tomaz AI (2013) Screening organometallic binuclear thiosemicarbazone ruthenium complexes as potential anti-tumour agents: cytotoxic activity and human serum albumin binding mechanism. Dalton Trans 21:7131–7146CrossRefGoogle Scholar
  25. 25.
    Karthikeyan S, Bharanidharan G, Kesherwani M, Mani KA, Srinivasan N, Velmurugan D, Aruna P, Ganesan S (2016) Insights into the binding of thiosemicarbazone derivatives with human serum albumin: spectroscopy and molecular modeling studies. J Biomol Struct Dyn 34:1264–1281CrossRefGoogle Scholar
  26. 26.
    Xu Z, Liu Y, Zhou S, Fu Y, Li C (2016) Analysis of the Interaction of Dp44mT with human serum albumin and calf thymus DNA using molecular docking and spectroscopic techniques. Int J Mol Sci 17:1042–1057CrossRefGoogle Scholar
  27. 27.
    Chaves OA, de Oliveira CHCS, Ferreira RC, Pereira RP, de Melos JLR, Rodrigues-Santos CE, Echevarria A, Cesarin-Sobrinho D (2017) Investigation of interaction between human plasmatic albumin and potential fluorinated anti-trypanosomal drugs. J Fluor Chem 199:103–112CrossRefGoogle Scholar
  28. 28.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Methods 65:55–63CrossRefGoogle Scholar
  29. 29.
    Chaves OA, Jesus CSH, Cruz PF, Sant'Anna CMR, Brito RMM, Serpa C (2016) Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA. Spectrochim Acta A 169:175–181CrossRefGoogle Scholar
  30. 30.
    Wahba MEK, El-Enany N, Belal F (2015) Application of the Stern–Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations. Anal Methods 7:10445–10451CrossRefGoogle Scholar
  31. 31.
    Chaves OA, Cesarin-Sobrinho D, Sant’Anna CMR, de Carvalho MG, Suzart LR, Catunda-Junior FEA, Netto-Ferreira JC, Ferreira ABB (2017) Probing the interaction between 7-O-β-D-glucopyranosyl-6-(3-methylbut-2-enyl)-5,4-dihydroxyflavonol with bovine serum albumin (BSA). J Photochem Photobiol A 336:32–41CrossRefGoogle Scholar
  32. 32.
    Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Chaves OA, Soares BA, Maciel MAM, Sant’Anna CMR, Netto-Ferreira JC, Cesarin-Sobrinho D, Ferreira ABB (2016) A study of the interaction between trans-dehydrocrotonin, a bioactive natural 19-nor-clerodane, and serum albumin. J Braz Chem Soc 27:1858–1865Google Scholar
  34. 34.
    Simoni JA, Chagas AP (2007) Ellingham and Van't Hoff diagrams: some considerations. Quim Nova 30:501–504CrossRefGoogle Scholar
  35. 35.
    Chaves OA, Teixeira FSM, Guimarães HA, Braz-Filho R, Vieira IJC, Sant’Anna CMR, Netto-Ferreira JC, Cesarin-Sobrinho D, Ferreira ABB (2016) Studies of the interaction between BSA and a plumeran indole alkaloid isolated from the stem bark of aspidosperma cylindrocarpon (Apocynaceae). J Braz Chem Soc 28:1229–1236Google Scholar
  36. 36.
    Matei I, Hillebrand M (2010) Interaction of kaempferol with human serum albumin: A fluorescence and circular dichroism study. J Pharm Biomed Anal 51:768–773CrossRefGoogle Scholar
  37. 37.
    Khana SN, Islama B, Yennamalli R, Sultana A, Subbarao N, Khan AU (2008) Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. Eur J Pharm Sci 35:371–382CrossRefGoogle Scholar
  38. 38.
    Da Silva AP, Martini MV, de Oliveira CM, Cunha S, de Carvalho JE, Ruiz AL, da Silva CC (2010) Antitumor activity of (-)-alpha-bisabolol-based thiosemicarbazones against human tumor cell lines. Eur J Med Chem 45:2987–2993CrossRefGoogle Scholar
  39. 39.
    De Oliveira JF, da Silva AL, Vendramini-Costa DB, Amorim CAC, Campos JF, Ribeiro AG, de Moura RO, Neves JL, Ruiz ALTG, de Carvalho JE, de Lima MCA (2015) Synthesis of thiophene-thiosemicarbazone derivatives and evaluation of their in vitro and in vivo antitumor activities. Eur J Med Chem 104:148–156CrossRefGoogle Scholar
  40. 40.
    Wei L, Easmon J, Nagi RK, Muegge BD, Meyer LA, Lewis JS (2006) 64Cu-azabicyclo[3.2.2]nonane thiosemicarbazone complexes: radiopharmaceuticals for PET of topoisomerase II expression in tumors. J Nucl Med 47:2034–2041Google Scholar
  41. 41.
    Palanimuthu D, Shinde SV, Somasundaram K, Samuelson AG (2013) In vitro and in vivo anticancer activity of copper bis(thiosemicarbazone) complexes. J Med Chem 56:722–734CrossRefGoogle Scholar
  42. 42.
    Narwal M, Kumar D, Mukherjee TK, Bhattacharyya R, Banerjee D (2018) Molecular dynamics simulation as a tool for assessment of drug binding property of human serum albumin. Mol Biol Rep.  https://doi.org/10.1007/s11033-018-4308-3
  43. 43.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392Google Scholar
  44. 44.
    Nair MS (2015) Spectroscopic study on the interaction of resveratrol and pterostilbene with human serum albumin. J Photochem Photobiol B 149:58–67CrossRefGoogle Scholar
  45. 45.
    Chaves OA, de Barros LS, de Oliveira MCC, Sant’Anna CMR, Ferreira ABB, da Silva FA, Cesarin-Sobrinho D, Netto-Ferreira JC (2017) Biological interactions of fluorinated chalcones: Stimulation of tyrosinase activity and binding to bovine serum albumin. J Fluor Chem 199:30–38CrossRefGoogle Scholar
  46. 46.
    Joksimović N, Baskić D, Popović S, Zarić M, Kosanić M, Ranković B, Stanojković T, Novaković SB, Davidović G, Bugarčić Z, Janković N (2016) Synthesis, characterization, biological activity, DNA and BSA binding study: novel copper(ii) complexes with 2-hydroxy-4-aryl-4-oxo-2-butenoate. Dalton Trans 45:15067–15077CrossRefGoogle Scholar
  47. 47.
    Montalti M, Credi A, Prodi L, Gandolfi MT (2006) Handbook of Photochemistry. 3rd ed. CRC Press, Taylor & Francis, Boca RatonGoogle Scholar
  48. 48.
    Tang B, Huang Y, Ma X, Liao X, Wang Q, Xiong X, Li H (2016) Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity. Food Chem 212:434–442CrossRefGoogle Scholar
  49. 49.
    Sengupta P, Sardar PS, Roy P, Dasgupta S, Bose A (2018) Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. J Photochem Photobiol B 183:101–110CrossRefGoogle Scholar
  50. 50.
    Chaves OA, Jesus CSH, Henriques ES, Brito RMM, Serpa C (2016) In situ ultra-fast heat deposition does not perturb the structure of serum albumin. Photochem Photobiol Sci 15:1524–1535CrossRefGoogle Scholar
  51. 51.
    Shi J-H, Pan D-Q, Jiang M, Liu T-T, Wang Q (2016) Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods. J Photochem Photobiol B 164:103–111CrossRefGoogle Scholar
  52. 52.
    Wang L, Zhang G, Wang Y (2014) Binding properties of food colorant allura red with human serum albumin in vitro. Mol Biol Rep 41:3381–3391CrossRefGoogle Scholar
  53. 53.
    Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208Google Scholar
  54. 54.
    Sun Z, Xu H, Cao Y, Wang F, Mi W (2016) Elucidating the interaction of propofol and serum albumin by spectroscopic and docking methods. J Mol Liq 219:405–410CrossRefGoogle Scholar
  55. 55.
    Shahabadi N, Fili SM (2014) Molecular modeling and multispectroscopic studies of the interaction of mesalamine with bovine serum albumin. Spectrochim Acta A 118:422–429CrossRefGoogle Scholar
  56. 56.
    Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharm 12:1052–1061Google Scholar
  57. 57.
    Yu W, Shi L, Hui G, Cui F (2013) Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin. J Lumin 134:491–497CrossRefGoogle Scholar
  58. 58.
    Tuccori M, Montagnani S, Capogrosso-Sansone A, Mantarro S, Antonioli L, Fornai M, Blandizzi C (2015) Adverse reactions to oncologic drugs: spontaneous reporting and signal detection. Expert Rev Clin Pharmacol 8:61–75CrossRefGoogle Scholar
  59. 59.
    Stinchcombe TE (2007) Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel. Nanomedicine 2:415–423CrossRefGoogle Scholar
  60. 60.
    Koziol MJ, Sievers TK, Smuda K, Xiong Y, Müller A, Wojcik F, Steffen A, Dathe M, Georgieva R, Bäumler H (2014) Kinetics and efficiency of a methyl-carboxylated 5-Fluorouracil-bovine serum albumin adduct for targeted delivery. Macromol Biosci 14:428–439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto SENAI de Inovação em Química Verde (ISI-QV)Rio de JaneiroBrazil
  2. 2.Instituto de Química, Departamento de Química OrgânicaUniversidade Federal Rural do Rio de Janeiro (UFRRJ)SeropédicaBrazil
  3. 3.Laboratório de Imunologia Básica e Aplicada, Depto. Imunologia, Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  4. 4.Qualidade e Tecnologia (INMETRO), Divisão de Metrologia QuímicaInstituto Nacional de MetrologiaDuque de CaxiasBrazil

Personalised recommendations